Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Machine learning-derived immunosenescence index for predicting outcome and drug sensitivity in patients with skin cutaneous melanoma

Abstract

The functions of immunosenescence are closely related to skin cutaneous melanoma (SKCM). The aim of this study is to uncover the characteristics of immunosenescence index (ISI) to identify novel biomarkers and potential targets for treatment. Firstly, integrated bioinformatics analysis was carried out to identify risk prognostic genes, and their expression and prognostic value were evaluated. Then, we used the computational algorithm to estimate ISI. Finally, the distribution characteristics and clinical significance of ISI in SKCM by using multi-omics analysis. Patients with a lower ISI had a favorable survival rate, lower chromosomal instability, lower somatic copy-number alterations, lower somatic mutations, higher immune infiltration, and sensitive to immunotherapy. The ISI exhibited robust, which was validated in multiple datasets. Besides, the ISI is more effective than other published signatures in predicting survival outcomes for patients with SKCM. Single-cell analysis revealed higher ISI was specifically expressed in monocytes, and correlates with the differentiation fate of monocytes in SKCM. Besides, individuals exhibiting elevated ISI levels could potentially receive advantages from chemotherapy, and promising compounds with the potential to target high ISI were recognized. The ISI model is a valuable tool in categorizing SKCM patients based on their prognosis, gene mutation signatures, and response to immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Identification of prognostic risk immunosenescence related genes in TCGA-SKCM.
Fig. 3: An ISI was developed and validated using multiple machine learning algorithms.
Fig. 4: Comparison between the ISI signature and other SKCM related signatures.
Fig. 5: Immune landscape of ISI.
Fig. 6: Predictive value of the ISI in immunotherapy response and drug response.
Fig. 7: Genomic heterogeneity in high/low ISI groups.
Fig. 8: Single-cell analysis of ISI.
Fig. 9: Validation in a clinical in-house cohort.
Fig. 10: Prognostic value of ISI in pan-cancer.

Similar content being viewed by others

Data availability

All data used in this work can be acquired from the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/), the Cancer Genome Atlas (TCGA) datasets (https://xenabrowser.net/).

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA. Cutaneous melanoma. Lancet. 2023;402:485–502.

    Article  PubMed  Google Scholar 

  3. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23:660–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marconcini R, Pezzicoli G, Stucci LS, Sergi MC, Lospalluti L, Porta C, et al. Combination of immunotherapy and other targeted therapies in advanced cutaneous melanoma. Hum Vaccines Immunotherapeutics. 2022;18:1980315.

    Article  Google Scholar 

  6. Ogata D, Namikawa K, Takahashi A, Yamazaki N. A review of the AJCC melanoma staging system in the TNM classification (eighth edition). Jpn J Clin Oncol. 2021;51:671–4.

    Article  PubMed  Google Scholar 

  7. Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther. 2023;8:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020;13:151.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rodriguez JE, Naigeon M, Goldschmidt V, Roulleaux Dugage M, Seknazi L, Danlos FX, et al. Immunosenescence, inflammaging, and cancer immunotherapy efficacy. Expert Rev anticancer Ther. 2022;22:915–26.

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Investig. 2020;130:1073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019;51:27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA. 2020;26:903–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parker HS, Leek JT, Favorov AV, Considine M, Xia X, Chavan S, et al. Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction. Bioinformatics. 2014;30:2757–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017;18:248–62.

    Article  CAS  PubMed  Google Scholar 

  18. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.

    Article  CAS  PubMed  Google Scholar 

  19. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28:1747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic acids Res. 2013;41:D955–61.

    Article  CAS  PubMed  Google Scholar 

  21. Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell. 2013;154:1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PloS One. 2014;9:e107468.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell. 2018;175:984–97.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lynch KT, Young SJ, Meneveau MO, Wages NA, Engelhard VH, Slingluff CL Jr, et al. Heterogeneity in tertiary lymphoid structure B-cells correlates with patient survival in metastatic melanoma. J Immunother cancer. 2021;9:e002273.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tímár J, Ladányi A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int J Mol Sci. 2022;23:5384.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - Update 2022. Eur J Cancer. 2022;170:256–84.

    Article  PubMed  Google Scholar 

  29. Stadler JC, Belloum Y, Deitert B, Sementsov M, Heidrich I, Gebhardt C, et al. Current and Future Clinical Applications of ctDNA in Immuno-Oncology. Cancer Res. 2022;82:349–58.

    Article  CAS  PubMed  Google Scholar 

  30. Antonia SJ, López-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17:883–95.

    Article  CAS  PubMed  Google Scholar 

  31. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.

    Article  PubMed  Google Scholar 

  32. Wang Q, Yang Y, Yang M, Li X, Chen K. High mutation load, immune-activated microenvironment, favorable outcome, and better immunotherapeutic efficacy in melanoma patients harboring MUC16/CA125 mutations. Aging. 2020;12:10827–43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Candido S, Salemi R, Piccinin S, Falzone L, Libra M. The PIK3CA H1047R Mutation Confers Resistance to BRAF and MEK Inhibitors in A375 Melanoma Cells through the Cross-Activation of MAPK and PI3K-Akt Pathways. Pharmaceutics. 2022;14:590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18:197–218.

    Article  CAS  PubMed  Google Scholar 

  35. Covre LP, De Maeyer RPH, Gomes DCO, Akbar AN. The role of senescent T cells in immunopathology. Aging Cell. 2020;19:e13272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct Target Ther. 2021;6:424.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gorry C, McCullagh L, O’Donnell H, Barrett S, Schmitz S, Barry M, et al. Neoadjuvant treatment for stage III and IV cutaneous melanoma. Cochrane Database Syst Rev. 2023;1:Cd012974.

    PubMed  Google Scholar 

  38. Gibson F, Hanly A, Grbic N, Grunberg N, Wu M, Collard M, et al. Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin Rev Allergy Immunol. 2022;63:447–71.

    Article  CAS  PubMed  Google Scholar 

  39. Uyar B, Palmer D, Kowald A, Murua Escobar H, Barrantes I, Möller S, et al. Single-cell analyses of aging, inflammation and senescence. Ageing Res Rev. 2020;64:101156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu X, Chen Z, Shen W, Huang G, Sedivy JM, Wang H, et al. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther. 2021;6:245.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Barman PK, Shin JE, Lewis SA, Kang S, Wu D, Wang Y, et al. Production of MHCII-expressing classical monocytes increases during aging in mice and humans. Aging Cell. 2022;21:e13701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LYZ, YSW and SLL. Data curation: LYZ and YSW. Formal analysis: LYZ. Methodology: LYZ and YSW. Validation: YSW and SLL. Visualization: LYZ. Supervision: LYZ and SLL. Writing—original draft. SLL: writing—review and editing: YSW and SLL.

Corresponding authors

Correspondence to Zhiyu Ye, Gang Nie or Shaolong Leng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the ethical committee in the Seventh Affiliated Hospital of Sun Yat-sen University, and informed consent was obtained from all subjects.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, L., Qi, J. et al. Machine learning-derived immunosenescence index for predicting outcome and drug sensitivity in patients with skin cutaneous melanoma. Genes Immun 25, 219–231 (2024). https://doi.org/10.1038/s41435-024-00278-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-024-00278-3

Search

Quick links