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This study aims to identify the cancer-associated fibroblasts (CAF)-related genes that can affect immunotherapy and drug sensitivity
in hepatocellular carcinoma (HCC). Expression data and survival data associated with HCC were obtained in The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Weighted correlation network analysis (WGCNA) analysis was
performed to obtain CAF-related genes. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used for
regression analysis and risk models. Subsequently, Gene Set Enrichment Analysis (GSEA) analysis, Gene Set Enrichment Analysis
(ssGSEA) analysis, Tumor Immune Dysfunction and Exclusion (TIDE) analysis and drug sensitivity analysis were performed on the risk
models. Survival analysis of CAF scores showed that the survival rate was lower in samples with high CAF scores than those with
low scores. However, this difference was not significant, suggesting CAF may not directly influence the prognosis of HCC patients.
Further screening of CAF-related genes yielded 33 CAF-related genes. Seven risk models constructed based on CDR2L, SPRED1,
PFKP, ENG, KLF2, FSCN1 and VCAN, showed significant differences in immunotherapy and partial drug sensitivity in HCC. Seven
CAF-related genes may have important roles in immunotherapy, drug sensitivity and prognostic survival in HCC patients.
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INTRODUCTION
Currently, hepatocellular carcinoma (HCC) is considered one of the
most common and deadly malignancies in the world, with limited
treatment options available because of the complications in
disease progression and therapeutic response caused by hetero-
geneity within the liver tumor or between each tumor case [1].
Intrahepatic or systemic metastases are the leading cause of poor
prognosis in patients with advanced HCC [2], among which lung
metastasis is the most common and one of the leading causes of
death in HCC patients [3, 4]. Previous data shows that cirrhosis or
liver fibrosis occurs in approximately 80~90% of HCC progression
and is a necessary intermediate state to develop HCC. About one-
third of patients with cirrhosis carry the risk of HCC through their
lifetime [5, 6]. Therefore, further understanding the impact of
fibroblasts in HCC and exploring the genes associated with cancer-
associated fibroblasts (CAFs) in HCC may provide new ideas for
therapeutic strategies for this disease.
CAFs, originating mainly from activated hepatic stellate cells

and increasingly accumulating in HCC stroma, are significant
sources of extracellular matrix (ECM) [7–11]. The growing evidence
supported the role of CAF in tumor infiltration, migration and
invasion [12, 13]. In the past decades, many CAF-related genes,
such as CCL2 and CCL26, have been suggested to be involved in
tumor development [14, 15]. CXCL11 in CAFs was reported for its
implication in HCC migration [16]. HCC-related CAFs and their

related genes may be essential in regulating HCC cells [7, 17–19].
Studies on CAFs have provided new directions for further insights
into tumor development. Despite the evidence supporting the
regulatory role of CAFs in HCC, research focusing on CAF-related
genes in HCC remains scarce.
Weighted gene co-expression network analysis (WGCNA) is a

systematic bioinformatics algorithm that integrates highly coordi-
nated genes into multiple gene modules and analyzes the
correlation between modules and target phenotypes [20]. In this
study, CAF levels in HCC samples were obtained by scoring CAF to
identify gene modules associated with CAF scoring. Through
integrating the data in multiple databases, new CAF-related genes
associated with HCC were located to analyze their effect on
immunotherapy and drug sensitivity to provide a theoretical basis
for further insight into the mechanisms of CAF-related genes in
HCC, as well as a new direction for exploring new therapeutic tools
for HCC.

MATERIALS AND METHODS
Data download and processing
Liver Hepatocellular Carcinoma (LIHC) samples in The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/) were selected and down-
loaded to obtain HCC gene expression data and clinical data, in which
371 HCC samples and corresponding clinical data were extracted.
Microarray GSE76427 with the sequencing platform GPL10558 in GEO
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(https://www.ncbi.nlm.nih.gov/geo/) database was selected, which
includes 115 HCC samples and corresponding clinical expression files.

CAF scores and survival analysis
The expression data was normalized using the R language “limma”
package v3.54.2. TCGA data were processed using the “averesps” function
and GSE76427 microarray was processed using the “normalizeBetweenAr-
rays” function [21]. The R (v4.2.3) “MCPcounter” package v1.2.0 was used to
calculate CAF scores for data in TCGA data and GSE76427 microarray, using
the “MCPcounter.probesets” and “MCPcounter.probesets” [22, 23]. The CAF
scores of TCGA and GEO were merged with the clinical survival data and
the survival rate was analyzed using the “survival” v3.5-3 and “surviminer”
v0.4.9 packages. The surv_cutpoint function in the surviminer package was
used to calculate the best cutoff value and to plot survival curves.

WGCNA analysis
The CAF scores of TCGA and GSE76427 were extracted separately for
analysis using WGCNA package v1.72-1 [20] to identify CAF-related module
genes. This method analyzes the association between genes and classifies
genes into different colored modules. Genes not associated with other
genes are organized into insignificant gray modules. The recommended
soft threshold values automatically calculated were used for the soft
threshold selection procedure. The similarity between modules was
computed using the R language cor function based on the eigengenes
of the modules. The genes with high similarity were merged and the
merged modules were analyzed to determine the correlation between
module and CAFs.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional enrichment analyses were performed on the intersecting
genes of the CAF-related modules from TCGA and GSE76427 analyses
using R language “clusterProfiler” package v4.6.2 [24, 25]. For GO
enrichment analysis, enrichGO function was performed using p < 0.05 as
the significant pathway filter condition, while enrichKEGG function was
used for KEGG pathway enrichment analysis.

Construction or risk models
The expression data of those intersecting genes in TCGA were extracted
and merged with corresponding clinical data in TCGA using for univariate
cox analysis using the “survival” and “surviminer” packages, and the cxoph
function to obtain the candidate genes that significantly affected the
prognosis of HCC patients. The “glmnet” v4.1-7 and “surviviner” package
[26, 27], as well as glmnet and cv.glmnet function, were used for LASSO
regression analysis based on the candidate genes. The optimal prognostic
genes (p < 0.05) were located based on multi-factor cox regression analysis.
The point with the lowest cross-validation error was selected for feature
construction using the coef function to calculate the risk score (risk
score= ∑(coefficienti×expression of signature genei)). Based on this score,
risk values were assigned to each HCC sample to construct a risk model.
The median risk value was used as the median value to classify the samples
into high- and low-risk samples. Survival analysis was then performed on
the high- and low-risk samples using the “survival” package. The
calibration curves for survival period of respective 1 year, 3 year and 5
years were drawn using “survival”, “regplot” v1.1 and “rms” v6.7-1
packages, with coxph used as the function. The generated candidate
genes were subjected to differential analysis using “limma” v3.54.2 and
“ggpubr” v0.6.0 packages, and “wilcox.test”.

GSEA and ssGSEA analysis
The GSEA pathway enrichment analysis was performed using the “limma”
package and the “clusterProfiler” package for the high- and low-risk
samples and the configuration files of “c2.cp.kegg.Hs.symbols.gmt” down-
loaded from GSEA database, during which the GSEA function was used.
The “limma”, “GSEABase” v1.60.0 and “GSVA” v1.46.0 packages [28, 29]
were used for enrichment analysis for the high- and low-risk samples. The
exact configuration file “c2.cp.kegg.Hs.symbols.gmt” was used for the
ssGSEA enrichment analysis. The ssGSEA scores of the relevant pathways in
the samples were obtained using the gsva function and adjusted using the
“normalize” function. The correlation between the risk scores of the sample
and the ssGSEA scores of the signaling pathways in the risk model was
carried out using the “spearman” method.

Cancer cell line encyclopedia (CCLE) analysis
Sample expression files were downloaded from the CCLE database (https://
sites.broadinstitute.org/ccle). The database includes expression files for
both HCC samples and fibroblast samples. The expression data of the
candidate genes in the fibroblast and HCC samples were extracted from
the database and the expressions of candidate genes in fibroblast and HCC
samples were analyzed using “limma” and “ggpubr” packages. The
differential analysis was performed using “limma”, “ggpubr” packages
and comparisons function, with the default method for analysis and
p-value correction.

Tumor Immune Dysfunction and Exclusion (TIDE) prediction
The TIDE database (http://tide.dfci.harvard.edu/) was used to score HCC
samples from TCGA to obtain the immunotherapy score for each sample,
with the higher score for better immune escape ability and worse
immunotherapy efficiency. During the analysis, the tumor type was
selected as other due to the absence of a specific HCC category in the
database, and the previous immunotherapy type was chosen as no. The
file data were uploaded using the HCC expression data downloaded from
TCGA database, and the data were log2 processed to meet the data type
required by the database. Subsequently, the differences in immunotherapy
scores between the high- and low-risk samples were analyzed using the
“wilcox.test” method. The analysis of differences in immunotherapy
response in the high- and low-risk samples was carried out using “Chi-
squared Test “.

Drug sensitivity analysis
The Genomics of Drug Sensitivity in Cancer (GDSC) database (https://
www.cancerrxgene.org/) was used to download tumor expression data
and drug data, based on which “oncoPredict” v0.2 package was used to
analyze drug sensitivity [30]. The GDSC data were used as the train group
and the risk model data as the test group, and the batch correction
method was “eb “. A fluctuation deletion threshold of 0.2 and a minimum
sample size of 10 were used to obtain the drug sensitivity analysis results
and the sensitivity scores for each drug for each sample. Subsequently,
“limma” and “ggpubr” package were used to analyze the differences in
drug sensitivity between the high- and low- risk samples in the risk model
using “wilcox. test”.

RESULTS
CAF scoring and survival analysis in HCC
CAF scoring was performed on HCC expression data using the
MCPcounter algorithm to obtain a fibroblast score for each tumor
(Supplementary Tables 1 and 2). Subsequently, survival analysis
was performed based on the CAF scoring. The results showed that
among HCC data in TCGA, the survival rate of high CAF-scoring
samples was lower than that of the low CAF-scoring samples, but
this comparison showed no significant difference (Fig. 1A).
Meanwhile, survival analysis of the CAF scoring of the tumor
samples from GSE76427 downloaded from the GEO database also
showed that the survival rate of the high CAF scoring samples was
lower than that of the low CAF scoring samples (Fig. 1B), although
no statistically significant difference was detected. Those results
imply that CAFs may influence the survival of HCC patients
indirectly.

WGCNA analysis
To further screen HCC-associated CAFs, WGCNA analysis was
performed on TCGA data and GSE76427 data. WGCNA analysis of
TCGA data showed that all genes were classified into 8 different
colored modules (Fig. 2A). As CAFs were usually expressed in the
cell stroma, these modules were analyzed for correlation with CAF
scoring and StromalScore (Fig. 2B) and the results revealed that
the green module was highly correlated with CAF and Stromal-
Score, implying that genes in this module may be closely
associated with HCC associated CAFs. Similarly, WGCNA analysis
of GSE76427 revealed that the genes in this chip were divided into
5 different colored modules (Fig. 2C), and correlation analysis
showed a significant positive correlation between the blue
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Fig. 2 WGCNA analyses of CAF-related genes. A WGCNA analysis of TCGA data, graph A shows gene module clustering, the upper part
shows clustering before module merging, the lower part shows clustering after module clustering; B Correlation analysis between module
and CAF scoring, the horizontal coordinates indicate CAF scoring and StromalScore respectively, the vertical coordinates indicate gene
modules, the right histogram is the color scale; C, D WGCNA analysis of the GEO database.

Fig. 1 Overall survival based on CAF scoring in TCGA and GSE databases using MCPcounter. A Survival rate in TCGA database; B Survival
rate in GEO data, red lines in the graph are high CAF scoring and blue are low CAF scoring.
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module and CAF and StromalScore (Fig. 2D), implying that the
genes in the blue module may be closely associated with CAFs.

Functional enrichment on candidate genes
The genes in the significantly correlated modules of TCGA and
GSE76427 were extracted and the two sets of gene data were
intersected (Fig. 3A), and 33 candidate genes were finally
obtained. These 33 candidate genes were further analyzed for
GO and KEGG functional enrichment, and were found to be
enriched mainly under the functional categories of “extracellular
matrix organization” and “protein digestion and absorption”
(Fig. 3B, C), indicating those functional categories may be
associated with the formation or changes of CAFs in HCC. In the
signaling pathway analysis, we found that these genes were also
significantly enriched in the “AGE-RAGE signaling pathway in
diabetic complications” and “NF-kappa B signaling pathway”.
Those results suggest that alternation in CAF levels may
influence these pathways and thus affect the development of
HCC.

One-way cox analysis of candidate genes
One-way cox analysis was performed on these 33 candidate genes
(Fig. 4, Supplementary Table 3), and the results revealed that 7
genes, including CDR2L, were significantly associated with
prognostic survival of HCC patients, suggesting these 7 genes
may be related to CAFs in HCC and may play an important role in
the prognosis of HCC patients.

LASSO regression risk models
The LASSO regression risk model was constructed based on the
7 genes, CDR2L, SPRED1, PFKP, ENG, KLF2, FSCN1 and VCAN.
Further survival analysis of the risk model constructed by
LASSO regression (Fig. 5C) revealed that the survival rate in the
high-risk samples was significantly lower than that of the low-
risk samples, indicating that the 7 genes were not only closely
associated with CAFs but also played important roles in the
prognosis of HCC patients. Based on the data in the line chart
and calibration curves (Fig. 5D, E), there were significant
difference in patient risk and stage, which indicates this risk
model is of high accuracy to predicting the prognosis of
patients. Then the 7 candidate genes were analyzed for
differential expression in HCC and normal samples (Fig. 5F),
which identified CDR2L, PFKP, FSCN1 and VCAN were highly
expressed in HCC samples, whereas the expressions of SPRED1,
ENG and KLF2 in HCC samples showed no significant difference
with that in normal samples. Those results suggested CDR2L,
PFKP, FSCN1 and VCAN may regulate HCC more directly, while
SPRED1, ENG and KLF2 may mediate HCC progression
indirectly.

Expression analysis of model genes and CAF marker genes
CAF marker genes were obtained from published literature [31,
32]. Subsequently, the expression of genes screened for modeling
as well as CAF marker genes in the risk model were further
analyzed and the heat map was plotted (Fig. 6A). The results
showed that most of the CAF marker genes had higher expression
levels in the high-risk samples, while the model genes CDR2L,
SPRED1, PFKP, FSCN1 and VCAN also had higher expression levels
in the high-risk samples, which was consistent with the above
results. The positive correlation between the above 7 model genes
and CAF marker genes was found (Fig. 6B), suggesting that the
expressions of these 7 genes might be closely related to CAF levels
in HCC.

Fig. 3 Screening and functional enrichment of CAF candidate genes. A Gene intersections in modules significantly associated with CAFs of
TCGA and GEO, with intersecting genes in the middle part; B GO functional enrichment analysis of intersecting genes, with horizontal
coordinates indicating GeneRatio, vertical coordinates indicating functional entries, and color scale in the right histogram; C KEGG pathway of
intersecting genes enrichment analysis.

Fig. 4 One-way cox analysis of candidate genes, which shows genes
significantly associated with survival rate of HCC patients after one-
way cox analysis.
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Risk model GSEA analysis
To further understand the functions of genes in the risk model,
GSEA pathway enrichment analysis was performed on high- and
low-risk samples (Fig. 7A, B). The results showed that signaling
pathways, such as CELL CYCLE, DNA REPLICATION were signifi-
cantly enriched in the high-risk samples, while COMPLEMENT AND
COAGULATION CASCADES, DRUG METABOLISM CYTOCHROME
P450 were significantly enriched in the low-risk samples. These
pathways may play an important regulatory function in HCC.
Meanwhile, ssGSEA analysis was performed on the risk model and
the risk values of each sample were calculated for correlation
analysis with the pathways obtained from ssGSEA analysis

(Fig. 7C, D, Supplementary Figs. 1–6). The results found a
significant correlation between the risk scores of the samples
and the signaling pathways such as CELL CYCLE, which implies
that CAF most likely regulates HCC progression by indirectly
mediating the activation of these pathways.

CCLE expression analysis
To further understand the expression of the 7 candidate genes
in HCC samples and CAF samples, the differential expressions
of CDR2L, SPRED1, PFKP, ENG, KLF2, FSCN1 and VCAN were
analyzed using CCLE database (Fig. 8A, B). The results
showed that expression levels of these 7 genes were all

Fig. 5 LASOO regression analysis and risk model constructions of the 7 candidate genes. A, B LASOO regression of risk genes obtained
from one-way cox analysis; C Survival analysis of risk model constructed from LASSO regression, red lines in the graph are the high risk
samples and blue lines are the low risk samples. D Line chart for risk model; E Calibration curves for survival period of respective 1 year, 3 year
and 5 years; F Differential expression of candidate genes, red box in the graph is HCC samples and blue box is normal sample (N= 50, T= 374)
(*p.val < 0.05, **p.val < 0.01, ***p.val < 0.001).

Fig. 6 Expressions of model genes and CAF marker genes. A The expressions of genes used to construct the risk model and the expression
of CAF marker genes in the risk model, the vertical coordinates in the graph indicate the gene names, the top on the heat map is the model
gene, the bottom of the heat map is the CAF marker genes, and the right histogram is the color scale; B Correlation analysis between model
genes and CAF marker genes, the horizontal coordinates in the graph indicate the CAF marker gene, the vertical coordinate indicates the
model gene, and the right histogram is the color scale.
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down-regulated in the HCC samples compared to CAF cells,
among which 6 genes, SPRED1, PFKP, ENG, KLF2, FSCN1 and
VCAN, were significantly down-regulated in HCC. Those results
further suggest that these 7 genes are closely related to CAF

levels in HCC, and their expression levels may be substantially
associated with CAF. Therefore, it is speculated that CAFs
regulate HCC progression most likely through regulating the
expressions of these 7 genes.

Fig. 7 GESA analysis of the risk model. A, B GSEA enrichment for part of significant pathways in the high- and low-risk samples, respectively;
C, D Correlation analysis between the enriched pathway scores obtained from GSEA pathway enrichment and the risk values in the risk model.

Fig. 8 Candidate gene expression analysis in CCLE. A Heat map of candidate gene expression in CAFs and HCC samples in CCLE, with color
scale on the right histogram; B Box plot of candidate gene expression in CAFs and HCC in CCLE.
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Risk model immunotherapy
To further understand the sensitivity of the risk model to
immunotherapy, the samples in TCGA database were scored
using TIDE scoring to obtain the immunotherapy scoring
(Supplementary Fig. 7 and Supplementary Table 4). Subsequently,
a differential analysis of immunotherapy scoring between the
high- and low-risk samples in the risk model (Fig. 9A) was
performed and showed that the TIDE scores were significantly
higher in the high-risk samples than those in the low-risk samples,
indicating that the high-risk samples had a higher potential for
immune escape and weaker immunotherapy efficiency. The
proportion of samples responding to immunotherapy in the high-
and low-risk samples was counted (Fig. 9B) and the proportion of
non-responders was higher in the high-risk samples than in the
responders. In contrast, the opposite expression pattern was
found in the low-risk samples. This result suggests that these 7
CAF-related genes, which were used to construct the risk model,
may be associated with immunotherapy for HCC, highlighting the
potential of CAF on immunotherapy in HCC.

Drug sensitivity prediction on risk models
To further screen the drugs for HCC, drug sensitivities in the risk
model were predicted and differences in drug sensitivities
between the high- and low-risk samples were analyzed. The
results showed that 134 drugs showed significant differences in
sensitivity between the high- and low-risk samples (Supplemen-
tary Table 5), among which PLX-4720, PF-4708671, JAK1_8709 and
AZD2014, had the highest statistical differences (Fig. 10A–D),
implying that these drugs had better therapeutic effects in the
CAF-related gene constructed HCC risk model. Additionally, drug
sensitivity analysis demonstrated that all four drugs show better
sensitivity in the high-risk samples, suggesting that these 4 drugs
may be more effective in treating CAF-associated HCC.

DISCUSSION
CAFs were reported for their regulation of tumor growth,
angiogenesis and metastatic behavior in HCC [16, 33–35]. CAFs
can promote metastasis in HCC through chemokines such as
CXCL11, and CAF-carried proteins, such as CCL2 and CCL7 have
been shown to enhance HCC progression [13, 36–38]. The clinical
analysis found CAF abundance is often associated with poor
clinical outcomes and is considered an attractive therapeutic
target in primary HCC [39]. The bioinformatics method provides
clues in predicting CAF-related genes and prognosis in HCC. Dong

et al. found that TOP2A might be closely related to CAF in HCC
cancer and affect the prognosis of patients with HCC [40]. Song
et al. predicted the prognostic value of CAF in HCC using XCELL
calculation and found that the CAF-related risk model constructed
based on genes such as LAMB1 is of great potential in predicting
the prognosis of patients with HCC [41]. In addition, Yu et al.
constructed a CAF-associated risk model in HCC for predicting the
prognosis based on single-cell sequencing data and bulk RNA-seq
data [42]. Nevertheless, there are few studies identifying the CAF-
related genes in HCC, and there is still a paucity of studies
exploring the relevant mechanisms of CAF in HCC prognosis. In
this study, we obtained CAF scores from HCC data and GSE76427
in TCGA by using the MCPcounter algorithm and found that HCC
patients with higher CAF scores had worse survival rates based on
the data from TCGA data and the GSE76427. However, CAF scores
were not significantly associated with prognostic survival of HCC
patients, but in other tumors, such as gastric cancer, CAF
abundance was found to be strongly associated with prognosis
[43, 44]. This inconsistency may be explained by data limitations,
or on the one hand, and suggests that CAF may not directly and
dramatically affect the survival rate in HCC patients but in an
indirect way.
To understand the regulatory mechanisms associated with CAFs

in HCC, CAF-related genes in TCGA and GSE76427 data were
predicted by the WGCNA method, which is the first time to search
for CAF-related genes in HCC by the WGCNA analysis. A total of
33 shared CAF-associated genes were predicted in the two
datasets. Signaling enrichment analysis of these associated genes
showed that they were enriched in the “AGE-RAGE signaling
pathway in diabetic complications” and the “NF-kappa B signaling
pathway”. Consistently, several studies showed that these signal-
ing pathways are significantly involved in the development of HCC
[45–49], which further confirms that CAFs may indirectly influence
the development of HCC through these CAF-related genes.
Risk models for HCC were constructed based on CDR2L,

SPRED1, PFKP, ENG, KLF2, FSCN1 and VCAN genes using one-
way cox analysis and LASSO regression algorithms. Further
analysis of the expression of these 7 CAF-related genes showed
that their expression levels in HCC samples were significantly
correlated with the expression levels of CAF marker genes in HCC
samples, which further proved the association of 7 CAF-related
genes with CAF abundance in HCC. The decreased expression of
SPRED1 can substantially influence HCC progression [50]. The
study by Tan et al. showed miR-126-3p can affect the sensitivity of
HCC cells to Sorafenib by regulating SPRED1 [51]. In addition,

Fig. 9 TIDE analysis on risk models. A Differential analysis in TIDE scores in the risk model, horizontal coordinates indicate TIDE scores,
vertical coordinates indicate risk model groupings, the higher the TIDE score, the greater the immune escape capacity of that sample;
B Proportion of samples responding to immunotherapy in the risk model.
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SPRED1 is thought to be a regulator in several tumors, including
gastric cancer and breast cancer [52–54]. SPFKP was found to
affect cell stemness of HCC cells [55], whereas in lung cancer, PFKP
was found to regulate glucose metabolism [56]. In leukemia, PFKP
affected disease progression by influencing CXCR4-dependent
T-cell infiltration [57].
However, there are limited studies that have researched the

regulatory mechanisms of PFKP in HCC. In the study of Li et al., it
was pointed out that KLF2 can inhibit TGF-β-mediated cancer cell
motility, thus affecting HCC development [58]. Moreover, KLF2
was reported as a promising marker in HCC and could be used as
a prognostic marker associated with fibrosis and immune
infiltration for advanced HCC [59]. Accumulating evidence high-
lighted that KLF2 may be regulated by lncRNAs such as FBXL10-
AS1 and GHET1, thus affecting HCC progression [60–64], and that
KLF2 can mediate HCC progression through c-myc [65]. It was also
noted that miRNAs such as miR-145, miR-133a, and miR-539 could
influence proliferation, migration, and invasion ability of HCC cells
by targeting FSCN1 [66–69]. LncRNA ADORA2A-AS1 was found to
modulate the FSCN1/AKT axis to regulate HCC progression [70].
FSCN1 influenced adriamycin resistance in HCC by modulating
epithelial-mesenchymal transition [71]. In the study by Hayashi
et al., FSCN1 was also found to modulate the expression of
E-cadherin in HCC [72]. The implication of VCAN in HCC was
reported in a previous study, which demonstrated that VCAN
could affect the proliferation and metastasis of HCC cells through
EGFR-PI3K-AKT pathway [73]. Additionally, VCAN protein secreted
by CAFs can increase the cellular malignant transformation of
HCC. Therefore VCAN was considered to have the potential to
serve as a new therapeutic target in HCC [74]. Although less
research reported the mechanism of CDR2L and ENG in HCC,
CDR2L was found to be a hub gene in paraneoplastic cerebellar

degeneration [75, 76]. CDR2L has also been suggested as a
regulatory gene in ovarian cancer [77]. ENG, as an endothelial
glycoprotein gene, has been known for its essential role in many
tumors with the potential as a target for tumor therapy [78–80].
The expression level of CAF-related ENG was found to influence
the invasion and metastasis of rectal cancer cells, as reported by
Paauwe et al. [81]. Although the regulatory roles of these genes
have been reported in different tumors, however, few studies
reported their role in HCC, in HCC related CAFs. In the present
study, HCC expression data were analyzed to search for CAF-
related genes in HCC. Further expression analysis of these 7 model
genes in the CCLE showed that they exhibited significantly
elevated expression levels in fibroblasts. TIDE online algorithm in
the risk model found that the low-risk samples were closely
associated with improved immunotherapy efficiency in HCC
patients. Drug sensitivity analysis demonstrated that the high-
risk samples were highly sensitive to drugs such as PLX-4720, PF-
4708671, JAK1_8709 and AZD2014. Those analyses also provide
new research ideas for HCC treatment. In this study, several new
CAF-related genes were obtained using different CAF score
calculation methods and data from different sources instead of
those already reported. The risk model constructed shows high
predictive ability for the prognosis of patients with HCC, and
therefore, provides a broader idea and direction for further
understanding the CAF-related regulatory mechanisms in HCC.
Although this study provides a new direction for further

understanding CAF-related genes and their regulatory mechan-
isms in HCC, we should still be aware of some limitations. First, this
is a retrospective bioinformatics analysis based on public
expression data, and thus the prognostic and therapeutic value
of the model constructed based on these 7 CAF-related genes
should be cross-validated in more data. In addition, the specific

Fig. 10 Drug sensitivity analysis using risk models. A–D: Sensitivity analysis of 4 different drugs in the risk model. Vertical coordinates in the
graph indicate drug sensitivity, horizontal coordinates indicate sample subgroups, and p-values for differences are shown above.
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biological role of CAF-related genes in HCC and their association
with CAFs should be further clarified through molecular and
animal experiments. Nevertheless, our results can serve as a
theoretical basis for future studies on CAF-related studies in HCC.

CONCLUSION
In conclusion, a comprehensive co-expression network focusing
on CAF-related genes in HCC was constructed. Risk models
constructed based on CAF-related genes, CDR2L, SPRED1, PFKP,
ENG, KLF2, FSCN1 and VCAN were able to predict their association
with prognosis, chemotherapy and immunotherapy response of
HCC patients. This study provides new insights into CAF-related
regulation and therapeutic strategies for HCC. Clinical validation
would further added the credibility of this study and future studies
with clinical data are encouraged to further validate the
association of CDR2L, SPRED1, PFKP, ENG, KLF2, FSCN1 and VCAN
with prognosis, chemotherapy and immunotherapy response of
HCC patients.
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