Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metformin facilitates anti-PD-L1 efficacy through the regulation of intestinal microbiota

Abstract

Metformin is a synthetic biguanide proven to have beneficial effects against various human diseases. Research has confirmed that metformin exerts its effects by regulating the composition of intestinal microbiota. The composition of intestinal microbiota influences the efficacy of anti-PD-L1 immunotherapy. We assume that the regulation of metformin on intestinal microbiota could enhance the therapeutic efficiency of anti-PD-L1 antibodies. In Lewis lung cancer-bearing C57BL/6J mice, we find that metformin enhances PD-L1 antibody efficacy mainly depending on the existence of gut microbiota, and metformin increases the anti-tumor immunity through modulation of intestinal microbiota and affects the integrity of the intestinal mucosa. Antibiotic depletion of gut microbiota abolished the combination efficacy of PD-L1 antibody and metformin, implying the significance of intestinal microbiota in metformin’s antitumor action. Combining anti-PD-L1 antibody with metformin provoked tumor necrosis by causing increased CD8 T-cell infiltration and IFN-γ expression. In conclusion, metformin could be employed as a microecological controller to prompt antitumor immunity and increase the efficacy of anti-PD-L1 antibodies. Our study provided reliable evidence that metformin could be synergistically used with anti-PD-L1 antibody to enhance the anti-cancer effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo anti-tumor effect of metformin (Met) was related to enhance immunology.
Fig. 2: metformin causes intestinal microbiota alteration in tumor-bearing mice.
Fig. 3: B. bifidum and A. muciniphila exerted anti-tumor activity by modulating intestinal microbiota.
Fig. 4: metformin might improve the efficacy of anti-PD-L1 by increasing immunization.
Fig. 5: Metformin enhanced the efficacy of anti-PD-L1 antibody dependent with the existence of gut microbiota.

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  1. Wu D, Hu D, Chen H, Shi G, Fetahu IS, Wu F, et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature. 2018;559:637–41.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Castillo-Quan JI, Blackwell TK. Metformin: Restraining Nucleocytoplasmic shuttling to fight cancer and aging. Cell. 2016;167:1670–1.

    Article  CAS  PubMed  Google Scholar 

  3. Elgendy M, Ciro M, Hosseini A, Weiszmann J, Mazzarella L, Ferrari E, et al. Combination of Hypoglycemia and Metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3beta-MCL-1 axis. Cancer Cell. 2019;35:798–815.e5.

    Article  CAS  PubMed  Google Scholar 

  4. Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 2018;71:606–20.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lyu Y, Li D, Yuan X, Li Z, Zhang J, Ming X, et al. Effects of combination treatment with metformin and berberine on hypoglycemic activity and gut microbiota modulation in db/db mice. Phytomedicine. 2022;101:154099.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Q, Hu N. Effects of Metformin on the Gut Microbiota in obesity and Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes. 2020;13:5003–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Padda J, Khalid K, Cooper AC, Jean-Charles G. Association between Helicobacter pylori and Gastric Carcinoma. Cureus. 2021;13:e15165.

    PubMed  PubMed Central  Google Scholar 

  8. Rao B, Ren T, Wang X, Wang H, Zou Y, Sun Y, et al. Dysbiosis in the human microbiome of Cholangiocarcinoma. Front Physiol. 2021;12:715536.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ruo SW, Alkayyali T, Win M, Tara A, Joseph C, Kannan A, et al. Role of Gut Microbiota Dysbiosis in breast cancer and novel approaches in prevention, diagnosis, and treatment. Cureus. 2021;13:e17472.

    PubMed  PubMed Central  Google Scholar 

  10. Rezen T, Rozman D, Kovacs T, Kovacs P, Sipos A, Bai P, et al. The role of bile acids in carcinogenesis. Cell Mol Life Sci. 2022;79:243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keane JM, Walsh CJ, Cronin P, Baker K, Melgar S, Cotter PD, et al. Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints. Br J Cancer. 2023;128:528–36.

    Article  CAS  PubMed  Google Scholar 

  12. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun JY, Zhang D, Wu S, Xu M, Zhou X, Lu XJ, et al. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark Res. 2020;8:35.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371:595–602.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Ma J, Huang L, Hu D, Zeng S, Han Y, Shen H. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor? J Exp Clin Cancer Res. 2021;40:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salgia NJ, Bergerot PG, Maia MC, Dizman N, Hsu J, Gillece JD, et al. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving Anti-PD-1 immune checkpoint inhibitors. Eur Urol. 2020;78:498–502.

    Article  CAS  PubMed  Google Scholar 

  17. Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front Immunol. 2021;12:622064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Park EM, Chelvanambi M, Bhutiani N, Kroemer G, Zitvogel L, Wargo JA. Targeting the gut and tumor microbiota in cancer. Nat Med. 2022;28:690–703.

    Article  CAS  PubMed  Google Scholar 

  20. Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21:28.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hosseinzadeh R, Feizisani F, Shomali N, Abdelbasset WK, Hemmatzadeh M, Gholizadeh Navashenaq J, et al. PD-1/PD-L1 blockade: Prospectives for immunotherapy in cancer and autoimmunity. IUBMB Life. 2021;73:1293–306.

    Article  CAS  PubMed  Google Scholar 

  22. Huang Q, Wu X, Wang Z, Chen X, Wang L, Lu Y, et al. The primordial differentiation of tumor-specific memory CD8(+) T cells as bonafide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell. 2022;185:4049–66.e25.

    Article  CAS  PubMed  Google Scholar 

  23. Najafi S, Majidpoor J, Mortezaee K. The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors. Life Sci. 2022;310:121138.

    Article  CAS  PubMed  Google Scholar 

  24. Naqash AR, Kihn-Alarcon AJ, Stavraka C, Kerrigan K, Maleki Vareki S, Pinato DJ, et al. The role of gut microbiome in modulating response to immune checkpoint inhibitor therapy in cancer. Ann Transl Med. 2021;9:1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li L, Ye J. Characterization of gut microbiota in patients with primary hepatocellular carcinoma received immune checkpoint inhibitors: A Chinese population-based study. Medicine. 2020;99:e21788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang J, Liu D, Wang Y, Liu L, Li J, Yuan J, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut. 2022;71:734–45.

    Article  CAS  PubMed  Google Scholar 

  27. Wang C, Li Q, Ren J. Microbiota-immune interaction in the pathogenesis of gut-derived infection. Front Immunol. 2019;10:1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang J, Kim CJ, Go YS, Lee HY, Kim MG, Oh SW, et al. Intestinal microbiota control acute kidney injury severity by immune modulation. Kidney Int. 2020;98:932–46.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Li ZX, Xie CY, Fan J, Lv J, Xu XJ, et al. Gegen Qinlian decoction enhances immunity and protects intestinal barrier function in colorectal cancer patients via gut microbiota. World J Gastroenterol. 2020;26:7633–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen XJ, Liu S, Han DM, Han DZ, Sun WJ, Zhao XC, et al. FUT8-AS1 inhibits the malignancy of melanoma through promoting miR-145-5p Biogenesis and suppressing NRAS/MAPK signaling. Front Oncol. 2020;10:586085.

    Article  PubMed  Google Scholar 

  31. Zhou B, Yuan Y, Zhang S, Guo C, Li X, Li G, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front Immunol. 2020;11:575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mueller NT, Differding MK, Zhang M, Maruthur NM, Juraschek SP, Miller ER 3rd, et al. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care. 2021;44:1462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ke H, Li F, Deng W, Li Z, Wang S, Lv P, et al. Metformin exerts anti-inflammatory and mucus barrier protective effects by enriching Akkermansia muciniphila in Mice With Ulcerative Colitis. Front Pharm. 2021;12:726707.

    Article  CAS  Google Scholar 

  34. Pandey A, Verma S, Kumar VL. Metformin maintains mucosal integrity in experimental model of colitis by inhibiting oxidative stress and pro-inflammatory signaling. Biomed Pharmacother. 2017;94:1121–8.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao Y, Liu F, Li S, Jiang N, Yu C, Zhu X, et al. Metformin promotes innate immunity through a conserved PMK-1/p38 MAPK pathway. Virulence. 2020;11:39–48.

    Article  CAS  PubMed  Google Scholar 

  36. Afzal MZ, Mercado RR, Shirai K. Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. J Immunother Cancer. 2018;6:64.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The current study was supported by the Medical Science and Technology Project of Hebei Provincial Health Commission (numbers 20230101 and 20211364).

Author information

Authors and Affiliations

Authors

Contributions

XPZ and HYW are responsible for conception and study of the study; XPZ and CL are responsible for the conduction the experiments; LCP and XPZ are responsible for data acquisition and statistical analysis. The manuscript was written by XPZ and supervised by HYW.

Corresponding author

Correspondence to Hongyan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liu, C., Peng, L. et al. Metformin facilitates anti-PD-L1 efficacy through the regulation of intestinal microbiota. Genes Immun 25, 7–13 (2024). https://doi.org/10.1038/s41435-023-00234-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-023-00234-7

Search

Quick links