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Genetic variants of interferon-response factor 5 are associated
with the incidence of chronic kidney disease: the D.E.S.I.R. study
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Inflammation has been associated with renal diseases. The Interferon Regulatory Factor (IRF)-5 is a key transcription factor in the
pro-inflammatory polarization of M1-like macrophages. GWAS have reported that the IRF5 locus is associated with autoimmune
diseases and with the estimated glomerular filtration rate (eGFR). We study whether allelic variations in IRF5 are associated with the
incidence of chronic kidney disease (CKD) in a general population. We genotyped eleven IRF5 SNPs in the French D.E.S.I.R. cohort
from the general population (n= 4820). Associations of SNPs with baseline renal parameters were assessed. Data were analyzed for
three endpoints during a 9-year follow-up, incidence of:at least stage 3 CKD, the KDIGO criterion “certain drop in eGFR”, and
incidence of micro/macro albuminuria. In the cross-sectional analysis, rs10954213 and rs10954214 were associated with eGFR and
rs1874328 with urinary albumin/creatinine ratio (ACR). Rs3807306, rs11761199, rs78658945, rs1874328, rs10954213 and rs11770589
were associated with the incidence of stage 3 CKD in multi-adjusted models. Rs4731532, rs3807306, and rs11761199 were
associated with the incidence of CKD defined by the KDIGO. Rs4731532, rs3807306, rs11761199 and rs79288514 were associated
with the incidence of micro/macro albuminuria. Our results support the hypothesis of the importance of IRF5 mediated
macrophage polarization in the etiology of CKD.
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INTRODUCTION
Chronic inflammation forms part of virtually every human
disease, including renal diseases [1, 2]. Macrophages are key
players in the inflammatory process: upon M1-like polarization,
they secrete powerful proinflammatory cytokines [3]. These
molecules exert their effects on neighboring parenchymal cells
and recruit monocytes from circulation that can amplify local
inflammation [3]. Macrophages are the main effector cells of
kidney inflammation, their M1-like polarization is a character-
istic feature of chronic inflammation: recruited monocytes
infiltrate the kidney and differentiate to increase macrophage
numbers in the tissue [1, 4, 5]. This has been reported in human
chronic kidney disease (CKD). In addition, in experimental
progressive CKD, M1-like macrophages are present from the
early phases of inflammation [4], and the magnitude of
macrophage infiltration correlates with the severity of kidney
injury [6–8]. Despite these reports suggesting an effector role
for macrophage infiltration and M1-like polarization in renal
disease, the events initiating M1-like polarization in human
CKD require further elucidation.
Under healthy physiological conditions, the kidney macrophage

compartment includes a population of phenotypically distinct
resident macrophages as well as a minority population of

macrophages differentiated from circulating monocytes [9–11].
The latter compartment undergoes rapid expansion upon tissue
injury, and this occurs in a number of disease contexts, including
kidney disease [11]. As reviewed in [1], most forms of acute renal
inflammation feature macrophage infiltration with a predominant
M1-like phenotype.
M1-like macrophage polarization is transcriptionally controlled

by the interferon regulatory factor (IRF)-5 [12], a transcription
factor that pioneers the type-1 interferon (IFN-I) response,
orchestrating both acute and chronic inflammation [13]. Our
own studies have shown that IRF5 is metabolically responsive, and
its dysregulated activity plays a role in adipose tissue and liver
inflammation upon insulin resistance [14–16].
In genome-wide association studies (GWAS), variants at the IRF5

locus have been associated with autoimmune diseases (systemic
lupus erythematous, rheumatoid arthritis, multiple sclerosis)
[17–19]. Wuttke et al. [20] demonstrated in a large GWAS meta-
analysis, of more than 1 million individuals, that an IRF5
polymorphism was associated with the estimated glomerular
filtration rate (eGFR). Given this result, the known function of IRF5
in macrophage polarization and the role of macrophages in renal
disease, we sought to investigate whether IRF5 variants are
associated with kidney disease.
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To test the hypothesis that allelic variants in IRF5 are associated
with the incidence of kidney function related outcomes in the
general population, we explored the impact of IRF5 genetic
variations in a longitudinal study, the D.E.S.I.R. (Data from an
Epidemiological Study on the Insulin-Resistance syndrome)
cohort.

METHODS
Population
The D.E.S.I.R. study is a prospective study of 5212 unrelated participants at
inclusion (2576 men and 2636 women, aged 30 to 65 years), recruited from
volunteers who were offered periodic health examinations free of charge
by the French Social Security system in 10 health examination centers from
the western part of France. They were clinically and biologically evaluated
at 3-yearly visits and the final examination was 9 years after inclusion. A
detailed description of all clinical and laboratory measurements has been
reported [21].
To avoid population stratification problems, only individuals born in

mainland France were kept for genetic analyses (n= 4820). The D.E.S.I.R.
study was approved by the ethics committee of the Kremlin Bicêtre
Hospital, and all participants signed an informed consent according to
European legislation.
The estimated glomerular filtration rate (eGFR) was calculated using

serum creatinine concentrations and the CKD-EPI (Chronic Kidney Disease
Epidemiology collaboration) equation [22, 23]. Urinary albumin and
creatinine were assayed in about 3/4 of the sample (n= 3698), to calculate
the urinary albumin/creatinine ratio (ACR).
Participants were followed for eGFR decline and for new-onset chronic

kidney disease (CKD) during a median (IQR) duration of 9.0 (0.6) years. We
considered three criteria for kidney function decline and progression
during follow-up:

1. the incidence of at least stage 3 CKD — defined as an eGFR below
60ml/ min/1.73 m² — in at least one of the follow-up visits

2. a “Certain Drop in eGFR” criterion proposed by the KDIGO group
[24]; six eGFR categories were defined as ≥90, ([90, 60]), ([60, 45]),
([45, 30]), ([30, 15]), and eGFR < 15ml/min/1.73m². A “Certain Drop
in eGFR” was defined by KDIGO as a drop in eGFR category
accompanied by a 25% or greater drop in eGFR from baseline

3. the incidence of micro/macro albuminuria — defined as
ACR ≥ 30mg/g — in at least one of the follow-up visits.

The 9-year incident cases for each criterion were defined in people free
of disease by that definition at entry, who developed the disease at some

time during the follow-up. Characteristics of participants at baseline by
progression of CKD are described in supplementary tables 1–3. They are
similar to those we already published in a subset of the D.E.S.I.R. cohort
[25]. A flow diagram of the population and the study design is provided in
Fig. 1.

Genotyping
Single nucleotide polymorphisms (SNPs) spanning the whole IRF5 gene
region (chromosome 7q32.1) were selected because they had been found
to be associated with human diseases (mainly auto-immune diseases) or as
tag SNPs covering 80% of IRF5 allelic variability with a minor allele
frequency >5% in European populations (1000 Genomes Project, GRCh38):
rs4731532, rs752637, rs3807306, rs11761199, rs78658945, rs79288514,
rs1874328, rs2070197, rs10954213, rs11770589, and rs10954214 (from 5’ to
3’ positions) [26] (Supplementary Table 4). Genotypes were determined by
competitive allele-specific PCR genotyping system assays (KASP, LGC
Genomics, Hoddesdon, UK). Genotyping success rate was higher than 97%.
Genotypes were in Hardy–Weinberg equilibrium (Pearson’s chi-squared
test with 1 degree of freedom P > 0.01).

Statistical analysis
Continuous variables are expressed as mean [standard deviation (SD)] or
median (quartiles) and categorical variables as frequencies (percentages).
Associations between IRF5 SNPs with baseline eGFR and ACR (loge
transformed) were examined using linear regression analysis and trend
tests, after logarithmic transformation for ACR and adjustment for sex and
age, then sex, age and BMI. To test for interaction between sex and
genotype, we introduced the interaction term in the regression. Because
none of the interactions was found statistically significant, we provide the
results in the whole population (men and women). Associations between
SNPs and incident CKD were first tested by χ2 and Cochran trend tests
(unadjusted tests), then by Cox proportional hazards survival regression,
yielding hazard ratios (HR) with 95% confidence intervals (CI). We first
tested the interaction between sex and genotype by a model including
only the variables genotype, sex, and genotypeXsex. Because no
interaction term was found statistically significant, we performed the
analyses in the whole population (men and women). A first adjusted model
included as covariates sex, baseline age, body mass index (BMI), fasting
plasma glucose, and smoking status as well as the worst glycemic status at
any time during follow-up (type 2 diabetes mellitus or impaired fasting
glucose [plasma glucose between 6.10 and 6.99mmol/L]). This first model
is presented in Figs. 2–4. A fully adjusted model also included additionally
baseline systolic and diastolic blood pressures (SBP and DBP), hypertension
(SBP ≥ 140mmHg or DBP ≥ 90 or treatment for hypertension), use of
diuretics or angiotensin-converting enzyme inhibitors (ACEIs) or

Fig. 1 Flow diagram of the study population and design. The D.E.S.I.R. population was used in this study as indicated in the flow diagram to
test for cross-sectional and longitudinal associations between IRF5 polymorphisms and renal phenotypes.
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angiotensin receptor blockers (ARBs), total and high-density lipoprotein
(HDL) cholesterol and triglycerides. For kidney function decline according
to the first (eGFR <60ml/ min/1.73 m²) and second (KDIGO criterion)
definitions, a supplementary adjustment for baseline eGFR was used for
both models. For the incidence of micro/macro albuminuria, a supple-
mentary adjustment for baseline ACR was used. The adjusted tests
correspond to the best fitting models of inheritance according to
descriptive statistics (additive, dominant or recessive). All models are
presented in supplementary Tables 5–7.
P < 0.05 was considered to be statistically significant. Since the IRF5 locus

has already been associated with eGFR [20], we considered our study as a
replication and did not apply a correction for multiple testing. In our study,
for stage 3 CKD incidence, we could detect an OR ≥ 1.30 or ≤0.75 with 80%
power for 8/11 of the SNPs tested [minor allele frequency (MAF) ≥ 0.33],
and OR ≥ 1.50 or ≤0.60 for all SNPs (codominant model). For CKD defined
by the KDIGO “certain drop in eGFR” criterion, we could detect an
OR ≥ 1.28 or ≤0.77 with 80% power for 8/11 of the SNPs tested
(MAF ≥ 0.33), and OR ≥ 1.43 or ≤ 0.65 for all SNPs. For micro/macro-
albuminuria, we could detect an OR ≥ 1.43 or ≤0.68 with 80% power for 8/
11 of the SNPs tested (MAF ≥ 0.33), and OR ≥ 1.67 or ≤0.52 for all SNPs.
All statistical analyses were performed with SYSTAT 13 software for

Windows (Systat Software, Inc., Chicago, IL 60606, USA). We calculated the
power in our sample to detect associations for different ORs by using the
Quanto computer program (Gauderman WJ, Morrison JM,QUANTO 1.1: a
computer program for power and sample size calculations for genetic-
epidemiology studies, 2006; http://hydra.usc.edu/gxe).

RESULTS
In cross-sectional analyses at baseline, we observed associations of
rs10954213 and rs10954214 with eGFR and rs1874328 with ACR
(Tables 1 and 2).
After exclusion of people with eGFR <60ml/min/1.73 m² at

baseline, rs3807306, rs11761199, rs78658945, rs1874328,
rs10954213 and rs11770589 were associated with the incidence
of at least stage 3 CKD at the 9-year follow-up in one or more of
the multi-adjusted models (Fig. 2, supplementary Table 5). When
adding baseline eGFR in the adjustment covariates, only the
associations with rs3807306 and rs1874328 remained statistically
significant (supplementary Table 5). For rs3807306, in the model
adjusted for age, sex, BMI, fasting plasma glucose, smoking status
at baseline, and glycaemic status at any time, the HR (95%CI) was
1.56 (1.19–2.05) P= 0.001, and after additionally adding eGFR in
the model: 1.41 (1.07–1.86) P= 0.01. For rs1874328, the HR (95%
CI) was 1.43 (1.05–1.96), P= 0.02 and after additionally adding

eGFR in the model: 1.38 (1.01–1.88) P= 0.04 (supplementary table
5). Both remained statistically significantly associated after further
adjustment in models (supplementary table 5).
Concerning the incidence of CKD defined by the KDIGO “certain

drop in eGFR” criterion, we first did not observe any associations in
unadjusted tests or by using multi-adjusted models without eGFR.
However, rs4731532, rs3807306, and rs11761199 were associated
with the incidence of CKD defined by the KDIGO criterion only in
the models including baseline eGFR (Fig. 3, supplementary Table
6). For rs3807306, the HR for the model adjusted for sex, age, BMI,
fasting plasma glucose, smoking status at baseline, and glycaemic
status at any time without eGFR was 1.24 (0.97–1.59) P= 0.09,
with eGFR: 1.43 (1.11–1.83) P= 0.005 (supplementary Table 6).
Rs4731532, rs3807306, rs11761199 and rs79288514 were

associated with the incidence of albuminuria in multi-adjusted
models (Fig. 4, supplementary Table 7). Adding baseline ACR in
the models did not modify the strength of the associations. For
rs3807306, the HR for the multi-adjusted model (sex, age, BMI,
fasting plasma glucose, smoking status at baseline, and glycaemic
status at any time) without ACR was 1.29 (1.02–1.62) P= 0.031,
with ACR: 1.28 (1.02–1.62) P= 0.034

DISCUSSION
In this population-based cohort, that was mainly healthy at
baseline, IRF5 genetic variation was associated with eGFR and ACR
at baseline, and with the incidence of renal disease assessed by
three different criteria.
Most of the associated SNPs are either functional or associated

with IRF5 expression and/or auto-immunity, or in linkage
disequilibrium with known functional SNPs. In a study on human
systemic lupus erythematosus [27], some variants reside in
conserved elements within the 3’ UTR (rs10954214, rs10954213)
and the rs10954213 G allele is predicted to disrupt a polyA signal
sequence downstream of the stop codon of IRF5 in the 3’UTR
region of exon 9, therefore playing a role in mRNA expression and
stability. Other variants associated with IRF5 expression are
located in the exon 1B splice site, such as the rs2004640 [27].
This SNP is in very high linkage disequilibrium with the rs4731532
that we genotyped in our study (r²=0.83 using LDpop online tool
on 1000 Genomes European populations [26]). An enhancer
variant rs4728142, affecting IRF5 expression and causal in the
association with systemic lupus erythematosus [28], is also in high
linkage disequilibrium with some of the SNPS we studied (r²=0.71
both with rs4731532 and rs3807306 in European populations).
The direction of the associations observed in D.E.S.I.R. indicate

that impairment in renal function would be associated with an
increase in IRF5 expression, therefore with more inflammation [29].
Our results support the hypothesis that high IRF5 expression is

damaging for the kidney. Since it is also causative in autoimmunity,
we wonder whether the associations we observed are a conse-
quence of the renal manifestation of autoimmune diseases such as
lupus [30]. Nevertheless, our sample from the D.E.S.I.R. cohort is
composed of mainly healthy people. The effect could be direct or
could be due to the inflammation associated with IRF5 over-
expression. An epigenome-wide association study for eGFR and ACR
showed that DNA methylation at IRF5 was associated with kidney
disease and a Mendelian randomization indicated a causal effect on
eGFR [31]. In that study, an increase in methylation at the IRF5 locus,
therefore a lower expression, is accompanied by a gain in eGFR.
Macrophages are present in the kidney in two main forms:

resident macrophages [32], or infiltrating macrophages. The latter
form derives from circulating monocytes that differentiate into
macrophages in situ [33]. Under physiological stress that drives
monocyte recruitment to a site of injury, monocytes will tend to
differentiate into M1-like proinflammatory macrophages [34].
These cells have been reported to exert a central pathogenic role
at the onset of acute kidney injury in animal models. In different

Fig. 2 Risk of Stage 3 CKD (eGFR <60ml/min/1.73m2) incidence
during follow-up according to IRF5 SNPs. Considering the risk for
the minor allele: A additive model, D dominant model, R recessive
model. Hazard ratio (95% confidence interval) by Cox proportional
hazards survival regression model, adjusted for sex, age, BMI, fasting
plasma glucose, smoking status at baseline, glycemic status at any
time.
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models of CKD, M1-like macrophages act in early phases of
inflammation [6–8]. IRF5 is a key transcription factor involved in
M1-like polarization and in promoting the expression of proin-
flammatory cytokines [12]. It could be hypothesized that genetic
overexpression of IRF5 could manifest as a basally polarized state
in macrophages or result in increased readiness to undergo M1-
like polarization. In either of these cases, accelerated or amplified
inflammation would predispose to CKD.
Interestingly, while overexpression of IRF5 has been linked to

insulin [14–16, 35, 36] a condition that predisposes to or often
coexists with renal disease, our results indicate that the genetic
associations with renal disease are independent of insulin
resistance, as they remained significant after adjustments for
glycemia and diabetes/impaired fasting glycemia status.
Our study has strengths and limitations. The main strength of

our study is that we were able to perform a prospective analysis in

a cohort with a follow-up of 9 years, in a large general population.
This allowed us to show associations with incident CKD, which
could not be seen in a previous cross-sectional GWAS meta-
analysis [20] showing an association with eGFR, but not with stage
3 CKD. Nevertheless, in D.E.S.I.R., adjusting for baseline eGFR
lowered the strength of the associations. As a limitation, we did
not measure the true glomerular filtration rate with one of the
gold-standard methods, as they are not easily applicable to large
cohort studies. Instead, we used estimations based on plasma
creatinine. The SNP highlighted in the large meta-analysis on eGFR
[20], rs3757387, could not be genotyped in our study. Never-
theless, this SNP is in high linkage disequilibrium with rs3807306
(r²=0.78 using LDpop online tool on 1000 Genomes European
populations [26]), the SNP most highly associated with renal
function of all the SNPs we studied. Our study included people of
European descent and our conclusions may not apply to people

Table 1. Mean (standard deviation) of eGFR at baseline according to IRF5 genotypes and P values of trend tests across genotypes in adjusted linear
regression analyses.

SNP ID eGFR (ml/min/1.73m²)
Mean (SD)

P (trend, adjusted for sex,
age/sex, age, BMI)

MM Mm mm

rs4731532 86.8 (13.5) 86.7 (13.8) 86.1 (14.4) 0.44/0.47

rs752637 86.1 (14.0) 86.8 (13.9) 87.5 (13.5) 0.14/0.16

rs3807306 87.1 (13.5) 86.8 (13.9) 85.6 (14.2) 0.09/0.10

rs11761199 87.2 (13.8) 86.6 (13.7) 85.8 (14.3) 0.11/0.12

rs78658945 86.3 (13.9) 87.1 (13.8) 87.8 (12.8) 0.18/0.17

rs79288514 86.7 (13.9) 86.0 (13.6) 88.1 (13.7) 0.26/0.25

rs1874328 87.1 (13.8) 86.5 (13.7) 86.1 (14.1) 0.43/0.41

rs2070197 86.7 (13.8) 86.1 (14.1) 85.7 (14.8) 0.18/0.25

rs10954213 85.9 (13.8) 86.8 (13.9) 87.5 (13.5) 0.04/0.04

rs11770589 86.0 (13.8) 86.6 (13.9) 87.2 (13.8) 0.23/0.21

rs10954214 86.1 (13.8) 86.1 (15.5) 87.9 (13.5) 0.03/0.03

M major allele, m minor allele.
The D.E.S.I.R. study.

Table 2. Mean (quartiles) of urinary albumin/creatinine (ACR) at baseline according to IRF5 genotypes and P values of trend tests across genotypes in
adjusted linear regression analyses.

SNP ID Urinary ACR (mg/g)
Median (25%-75%)

P (trenda adjusted for sex,
age/sex, age, BMI)

MM Mm mm

rs4731532 7.01 (4.80–11.96) 7.24 (4.79–11.59) 7.10 (4.87–12.40) 0.88/0.95

rs752637 7.01 (4.75–11.73) 7.30 (4.87–11.91) 7.06 (4.82–11.79) 0.27/0.30

rs3807306 7.05 (4.83–11.57) 7.15 (4.86–11.71) 7.05 (4.78–12.57) 0.88/0.95

rs11761199 7.14 (4.88–11.70) 7.11 (4.81–11.78) 7.02 (4.75–12.1) 0.54/0.44

rs78658945 7.06 (4.79–11.70) 7.16 (4.83–11.96) 7.99 (4.94–12.99) 0.30/0.33

rs79288514 7.08 (4.80–11.79) 7.11 (4.80–11.56) 7.69 (5.05–12.19) 0.70/0.56

rs1874328 7.21 (4.97–11.81) 7.09 (4.80–11.91) 6.85 (4.49–10.96) 0.01/0.01

rs2070197 7.11 (4.79–11.66) 7.04 (4.95–12.72) 6.97 (4.96–11.14) 0.51/0.64

rs10954213 6.99 (4.68–11.78) 7.23 (4.91–11.80) 7.07 (4.94–11.61) 0.21/0.22

rs11770589 6.85 (4.61–11.48) 7.21 (4.89–11.98) 7.05 (4.98–11.7) 0.06/0.07

rs10954214 7.01 (4.73–11.69) 7.29 (4.93–11.91) 7.11 (4.90–11.98) 0.14/0.15

M major allele, m minor allele.
aLinear regression analysis on loge(ACR).
The D.E.S.I.R. study.
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from other ethnic backgrounds. However, it is noteworthy that the
reported association between IRF5 locus and eGFR was observed
in a trans-ancestry study, including individuals from European,
East Asian, African-American South Asian and Hispanic origins [20].
Finally, the observational design of our study does not allow us to
conclude a causal relationship between IRF5 genetic variation and
CKD, but rather allows us to raise some hypotheses.
In conclusion, in a cohort from the general population, IRF5

genetic polymorphisms were associated with renal function at
baseline and at follow-up. This relationship may be mediated by
macrophage-dependent inflammation at the kidney level.

DATA AVAILABILITY
The data underlying this article are available in Figshare, https://doi.org/10.6084/
m9.figshare.22559947.
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