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Understanding the genetic basis of immunological processes and their overall dynamics under the influence of population
immunogenetics and host-microbe interactions has been at the core of health and disease research. Our understanding of these
dynamics has recently undergone a paradigm shift with the application of high-resolution single cell or spatial omics technologies
that have facilitated a deeper understanding of healthy or diseased immune milieu. At Genes & Immunity, we wish to revamp the
journal to cater to these trends and bring together researchers working at these multidisciplinary interfaces of immunology and
genetics, with the aim of advancing fundamental and translational knowledge while revealing new immunotherapy or biomarker
modalities.
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The multidisciplinary research field at the interface of immunology
and genetics is currently experiencing an unprecedented expan-
sion and tremendous progress. In past, this field was largely
focussed on classical immunogenetics research i.e., finding
genetic regulatory systems behind different immune processes,
explaining genetic basis of diversification of specific immune
receptors (e.g., T cell receptors or TCRs and B cell receptors or
BCRs), explaining genetic variations of specific immune loci, or
explaining the genetic basis of immune lineage commitment
[1–6]. However, technological advances such as next-generation
sequencing, single cell or spatial -omics, and high-end imaging
have allowed deep profiling of different immune cell subsets at an
unprecedented resolution and scale [7–9]. Such immunogenomic,
immuno-transcriptomic or immuno-proteomic big data is funda-
mentally altering our understanding of the immune system. Thus,
not surprisingly, computational immunology is now considered a
core part of the field. Moreover this approach is currently
progressing toward usage of artificial intelligence methods like
machine learning, deep learning, or neural networks for extracting
immunologically meaningful knowledge from clinical or pre-
clinical datasets [10–12].
In parallel to immunological ‘big data’ explosion, three equally

important paradigm shifts have also co-transformed the interfacial
field of immunology and genetics. Firstly, a large part of previous
immunogenetic studies were restricted to either model organisms
(e.g., whole-body genetic manipulations in rodents) or ex vivo
cultures of human immune cells. However, the higher resolution
of, and relatively affordable access to, different omics technologies
and immune cell lineage-specific genetic manipulation
approaches have allowed better mapping of in situ or in vivo
immune cells. In particular, the omics technologies have allowed
human immunological processes to be analyzed or annotated on
an intra-subject or inter-subject level for various healthy or
diseased states [13]. This progress was particularly useful for
mapping the human-specific pathology of coronavirus disease
2019 (COVID-19) across the entire world’s different human
populations in a relatively short period of time [14, 15]. Secondly,
while the influence of the immune system was previously

considered to be restricted to few pathological contexts e.g.,
infection, autoimmunity, or transplant rejection [16], yet now this
influence has been established to be relevant for diverse
pathologies like cancer, cardiovascular disease, fibrosis, metabolic
disorders, and even neurodegenerative maladies [16–22]. Finally,
in the last decade the enormous potential of immunotherapy has
finally been realized, thanks in-part to cancer immunotherapy [16].
Pioneering immunotherapies that agonize or antagonize different
immune processes are changing the clinical therapeutic landscape
in cancer, autoimmunity, allergy, inflammatory disorders, fibrosis,
and transplantation [16]. These advances have also provided
valuable clinical datasets that have enabled the correlation of
biomarkers of immunological process with clinicopathological
parameters of patients e.g., long-term survival, therapeutic
response.
All the above trends are together starting to paint a ‘network

view’ of our immune system (Fig. 1). It is now appreciated that
both system-wide and local immunological, cellular, and mole-
cular signals co-ordinate the activities of different immune cells
and organize them into specific interaction hubs (Fig. 1). At the
core of this organization lies the ability of our immune system to
differentiate self-antigens from disease-specific antigens. Herein,
self-antigens uphold immuno-regulatory signaling aimed at
suppressing autoimmunity while disease-specific antigens facil-
itate pro-inflammatory signaling aimed at eliminating diseased
cells to halt the progression of a particular pathology [23]. The
above differentiation is further aided by the presence of danger
signaling accompanying disease-specific antigens (Fig. 1) [24].
Specifically, infections or sterile immuno-pathologies (like cancer)
might be accompanied by extracellular exodus of specific danger
signals like pathogen-associated molecular patterns (PAMPs) or
damage-associated molecular patterns (DAMPs) respectively
[24–26]. Presence of such danger signals activates the antigen-
presenting cells of our immune system (macrophages or dendritic
cells) thereby allowing them to better prime the T cells for disease-
specific antigens thereby initiating a more robust antigen-specific
immunity and efficacious disease resolution [24].
The robustness of above processes is further facilitated by the

occurrence of specialized immune cell interactions hubs depend-
ing on different organs representing organ-specific immune
networks (Fig. 1). Indeed, specialized immune cell subsets are
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established to reside in different organs, where they perform
organ-specific homeostatic functions e.g., skin-resident immune
cells forming a barrier to extrinsic pathogens, gut-resident
immune cells regulating the gut microbiome while avoiding
opportunistic infections, or liver-specific immune cells that aid in
liver’s detoxification and lipid metabolism regulatory functions
[16, 27, 28]. Such organ-specific immune networks are just
beginning to be uncovered and a lot more work is required to
fully decipher the organ-specific immune milieus.
Above immune processes are co-regulated by a complex

interplay between different biomolecular layers i.e., genome/
epigenome, transcriptome, proteome, metabolome, lipidome and
secretome (Fig. 1). Various high-resolution omics tools have
revealed the multi-factorial functioning of the immune system on
the level of above biomolecular layers [7, 29]. These insights have
facilitated our deep understanding of TCR/BCR repertoire, the
affinity and potency of different antibodies, spatial organization of
immune cell hubs in different organs, variations of proteomic and
metabolite abundances depending on different pathological
states, and the tight regulation of the composition of different
immune cells’ secretome [7, 30, 31]. While impressive, many of
these insights remain largely fragmented across loosely connected
datasets. Thus, one of the emerging challenges is to systematically
organize the analyses of these biomolecular layers into integrated
multi-omics and spatial frameworks that more intimately connect
the different patients and/or pathologies to paint a more
complete picture of the immune system and its signaling hubs
[7, 32, 33].
To overcome the deficiencies of descriptive omics datasets,

cause-effect analyses based on genetic manipulation or pharma-
cological inhibition remains the cornerstone of understanding the
molecular underpinnings of different immunological processes.
Such cause-effect analyses are best executed in vivo in model
organisms (e.g., rodents, primates) and the efficacy of such
approaches is determined by the relative evolutionary conver-
gence or conservation of immunological processes between
humans and such model organisms (Fig. 1) [34, 35]. However,

the evolutionary divergences between humans and various model
organisms pose a potent barrier to cross-species translatability of
these insights [36]. While efforts are ongoing to overcome this
barrier through genetic manipulation screens involving human
organoid or tissue explant cultures, yet these tools may not fully
recapitulate the systems-wide and organ-specific dynamics of
different immune networks [37, 38].
The final frontier for the interfacial field of immunology and

genetics is to integrate above massive amounts of knowledge and
insights with human population immunogenetics (Fig. 1). It is well-
acknowledged that the complexity of the immune system is
further compounded by population-driven immunogenetic poly-
morphisms [39]. Such polymorphisms create subject-to-subject or
patient-to-patient variations on the levels of various molecules
e.g., human leucocyte antigen (HLA) and killer-cell immunoglo-
bulin-like receptors (KIR) [39]. These polymorphisms, which are co-
regulated by mitochondrial DNA, Y-chromosome, microsatellites,
and single nucleotide variations (SNVs), create allotype and
haplotype variations in human populations [39]. These immuno-
genetic polymorphisms heavily influence various processes
mentioned above e.g., TCR/BCR repertoire, gut microbiome,
metabolism, PAMP/DAMP sensing, and susceptibility/resistance
to specific pathologies [39–42]. Unfortunately, these human
population-specific features cannot be modeled in any rodent
model especially owing to the highly inbred nature of typical
rodent models (which tremendously reduces their immunogenetic
diversity) and their maintenance in animal facilities with low
microbial burdens (which negatively affects natural diversity of
gut microbiome) [43, 44]. Finally, the distinct vaccination history
and life-long microbial experiences of typical human populations
creates a large microbial antigen-specific TCR/BCR repertoire that
can confound differentiation of disease unspecific (bystander) vs.
antigen-specific T or B cell features in descriptive omics datasets
[45, 46]. This is because annotation of antigen specificity of TCR/
BCR repertoires in humans remains a potent challenge [7].
Despite all the gaps in knowledge highlighted above, the

evolutionary conservation between model organisms and

Fig. 1 The complex interface of genetics and immunity. A systems biology view of the immune system, integrating its various quantitative,
qualitative, and dynamic aspects from the perspective of biomolecules, signaling pathways, cellular interaction hubs, organ-specific immune
milieu, evolutionary trends, and population immunogenetics (Figure created using Biorender.com templates).
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humans, as well as the high-resolution insights from omics
datasets have successfully revealed various therapeutic and
biomarker targets. Such modalities have been successfully utilized
in human clinical settings e.g., vaccination or pharmacological
interventions against different infectious microbes and immune-
checkpoint blockade (ICB) immunotherapy in oncological contexts
[47–49]. Despite these promising developments, such immu-
notherapies or anti-microbial interventions still encounter the
setbacks of therapy resistance and/or lack of response, as well as
serious adverse events [50, 51]. Thus, studying the fundamental
immune mechanisms and their population-level variations hold
the key for creating better immunotherapy strategies, and
innovative treatment combinations. Similarly various immunolo-
gically relevant features have been successfully utilized as
clinically approved biomarkers e.g., tumor mutational burden
(TMB) or microsatellite instability (MSI) (both being potent sources
of tumor-specific antigens) and PD-L1 levels as markers of
immunogenic tumors highly likely to respond to ICBs [52].
However, the specific cut-off threshold of some of these
biomarkers to reliably differentiate ICB responders from non-
responders remains a challenge for current clinical practice [52].
Clearly, this is an era of thriving multidisciplinary research at the

interface of immunology and genetics which has created a vibrant
research community that is seeking new and innovative ways to
collaboratively tackle above challenges. By better showcasing such
research, the revamped Genes & Immunity aims to provide a unique
forum that captures the breadth of this community, from
fundamental research to translational and clinical studies. Through
our pages, we hope to increase the knowledge around four key
themes i.e., general immunology, immune-omics & biomarkers,
translational & clinical immunology, and immunotherapy, and
become a flagship journal for publications within these themes.
Ultimately, our goal is to provide an evolving and transformative
forum for researchers interested in the genetics of immunology. As
we embark on this revamped vision, we thank our authors, editorial
board members and referees as well as welcome our readers.
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