Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated analyses reveal the prognostic, immunological features and mechanisms of cuproptosis critical mediator gene FDX1 in KIRC

Abstract

The ferredoxin 1 (FDX1) gene had been recently reported as a critical mediator of cuproptosis, and without doubt, its roles in KIRC would be of importance. Hence, this paper was to explore the roles of FDX1 in kidney renal clear cell carcinoma (KIRC) and its potential molecular mechanisms via scRNA-sequencing and bulk RNA-sequencing analyses. FDX1 was lowly expressed in KIRC and validated both at the protein and mRNA levels (all p < 0.05). Moreover, its elevated expression was linked with a better overall survival (OS) prognosis in KIRC (p < 0.01). The independent impact of FDX1 on KIRC prognosis was demonstrated by univariate/multivariate regression analysis (p < 0.01). Gene set enrichment analysis (GSEA) identified seven pathways strongly associated with FDX1 in KIRC. Furthermore, FDX1 was also revealed to be significantly related with immunity (p < 0.05). In addition, patients with low expression of FDX1 might be more sensitive to immunotherapies. ScRNA-seq analysis found that FDX1 could be expressed in immune cells and was mainly differently expressed in Mono/Macro cells. Ultimately, we also identified several LncRNA/RBP/FDX1 mRNA networks to reveal its underlying mechanisms in KIRC. Taken together, FDX1 was closely related to prognosis and immunity in KIRC, and its RBP-involved mechanisms of LncRNA/RBP/FDX1 networks were also revealed by us.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mRNA expression levels of FDX1 in KIRC.
Fig. 2: Single-cell expression levels of FDX1 in the GSE159115 KIRC dataset.
Fig. 3: Relationships between FDX1 and clinicopathologic factors in the TCGA-KIRC dataset.
Fig. 4: Construction of nomogram based on FDX1 and clinicopathologic factors in the TCGA-KIRC dataset.
Fig. 5: FDX1 related pathways in KIRC by gene set enrichment analysis.
Fig. 6: Relationships between FDX1 and HRD, TMB, MSI and TNB by pan-cancer analysis.
Fig. 7: Correlations between FDX1 and immune cells infiltration, tumor microenvironment in the TCGA-KIRC dataset.
Fig. 8: Relationships between FDX1 and immune checkpoint molecules, immune cell pathways by pan-cancer analysis and scRNA-seq analysis of FDX1 expression in different KIRC GEO datasets.
Fig. 9: Prediction of immunotherapy responses.
Fig. 10: Prediction of FDX1 related mechanism in KIRC by starBase v2.0 database.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: Cancer J Clin. 2022;72:7–33.

    PubMed  Google Scholar 

  2. Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol. 2015;67:85–97.

    Article  PubMed  Google Scholar 

  3. Penticuff JC, Kyprianou N. Therapeutic challenges in renal cell carcinoma. Am J Clin Exp Urol. 2015;3:77–90.

    PubMed  PubMed Central  Google Scholar 

  4. Williamson TJ, Pearson JR, Ischia J, Bolton DM, Lawrentschuk N. Guideline of guidelines: follow-up after nephrectomy for renal cell carcinoma. BJU Int. 2016;117:555–62.

    Article  PubMed  Google Scholar 

  5. Wolff I, May M, Hoschke B, Zigeuner R, Cindolo L, Hutterer G, et al. Do we need new high-risk criteria for surgically treated renal cancer patients to improve the outcome of future clinical trials in the adjuvant setting? Results of a comprehensive analysis based on the multicenter CORONA database. Eur J Surg Oncol: J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2016;42:744–50.

    Article  CAS  Google Scholar 

  6. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Sci (N. Y, N. Y). 2022;375:1254–61.

    Article  CAS  Google Scholar 

  7. Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer. 2023;22:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bian Z, Fan R, Xie L. A novel cuproptosis-related prognostic gene signature and validation of differential expression in clear cell renal cell carcinoma. Genes. 2022;13:851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang G, Sun J, Zhang X. A novel Cuproptosis-related LncRNA signature to predict prognosis in hepatocellular carcinoma. Sci Rep. 2022;12:11325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cai K, Tonelli M, Frederick RO, Markley JL. Human mitochondrial ferredoxin 1 (FDX1) and ferredoxin 2 (FDX2) both bind cysteine desulfurase and donate electrons for iron-sulfur cluster biosynthesis. Biochemistry. 2017;56:487–99.

    Article  CAS  PubMed  Google Scholar 

  11. Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA. 2010;107:11775–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Narayanan SP, Mannan R, Raskind G, Wang X, Vats P, et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc Natl Acad Sci USA. 2021;118:e2103240118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai Z, He Y, Yu Z, Hu J, Xiao Z, Zu X, et al. Cuproptosis-related modification patterns depict the tumor microenvironment, precision immunotherapy, and prognosis of kidney renal clear cell carcinoma. Front Immunol. 2022;13:933241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021;49:D1420–30.

    Article  CAS  PubMed  Google Scholar 

  15. Scholtes MP, Alberts AR, Iflé IG, Verhagen P, van der Veldt AAM, Zuiverloon TCM. Biomarker-oriented therapy in bladder and renal cancer. Int J Mol Sci. 2021;22:2832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noh KH, Kang HM, Yoo W, Min Y, Kim D, Kim M, et al. Ubiquitination of PPAR-gamma by pVHL inhibits ACLY expression and lipid metabolism, is implicated in tumor progression. Metab: Clin Exp. 2020;110:154302.

    Article  CAS  PubMed  Google Scholar 

  17. Yang FG, Zhang ZW, Xin DQ, Shi CJ, Wu JP, Guo YL, et al. Peroxisome proliferator-activated receptor gamma ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines. Acta Pharmacologica Sin. 2005;26:753–61.

    Article  CAS  Google Scholar 

  18. Hung JH, Yang TH, Hu Z, Weng Z, DeLisi C. Gene set enrichment analysis: performance evaluation and usage guidelines. Brief Bioinforma. 2012;13:281–91.

    Article  Google Scholar 

  19. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48:812–30.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Z, Ding Z, Yuan J, Shen S, Jian H, Tan Q, et al. Homologous recombination deficiency (HRD) can predict the therapeutic outcomes of immuno-neoadjuvant therapy in NSCLC patients. J Hematol Oncol. 2022;15:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, et al. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PloS One. 2010;5:e15661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7:153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 2016;8:11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z, Lu M, Qin Y, Gao W, Tao L, Su W, et al. Neoantigen: a new breakthrough in tumor immunotherapy. Front Immunol. 2021;12:672356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Ji H, Zhu B, Xing Q, Xie H. Molecular subtypes based on metabolic genes are potential biomarkers for predicting prognosis and immune responses of clear cell renal cell carcinoma. Eur J Immunol. 2022.

  27. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  Google Scholar 

  28. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18:248–62.

    Article  CAS  PubMed  Google Scholar 

  30. Hopkins AM, Kichenadasse G, Karapetis CS, Rowland A, Sorich MJ. Concomitant antibiotic use and survival in urothelial carcinoma treated with atezolizumab. Eur Urol. 2020;78:540–3.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Ji H, Liu S, Xing Q, Zhu B, Wang Y. Survival prognosis, tumor immune landscape, and immune responses of ADAMTS14 in clear cell renal cell carcinoma and its potential mechanisms. Front Immunol. 2022;13:790608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Tian Y, Liu S, Wang Z, Xing Q. Prognostic value and immunological role of AXL gene in clear cell renal cell carcinoma associated with identifying LncRNA/RBP/AXL mRNA networks. Cancer Cell Int. 2021;21:625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hong Y, Lin M, Ou D, Huang Z, Shen P. A novel ferroptosis-related 12-gene signature predicts clinical prognosis and reveals immune relevancy in clear cell renal cell carcinoma. BMC Cancer. 2021;21:831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang X, Zhang A, Feng Y, Su Y, Wang X, Jiang F, et al. A novel pyroptosis-related lncRNAs signature for predicting the prognosis of kidney renal clear cell carcinoma and its associations with immunity. J Oncol. 2021;2021:9997185.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang K, Xiao Y, Xu T, Yu W, Ruan Y, Luo P, et al. Integrative analysis reveals CRHBP inhibits renal cell carcinoma progression by regulating inflammation and apoptosis. Cancer Gene Ther. 2020;27:607–18.

    Article  CAS  PubMed  Google Scholar 

  36. Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15:681–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu Y, Zhou Y, Gao H, Wang Y, Cheng Q, Jian S, et al. LYAR promotes colorectal cancer progression by upregulating FSCN1 expression and fatty acid metabolism. Oxid Med Cell Longev. 2021;2021:9979707.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 2017;8:1769.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004;313:459–65.

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Hanavan PD, Kras K, Ruiz YW, Castle EP, Lake DF, et al. Loss of SETD2 induces a metabolic switch in renal cell carcinoma cell lines toward enhanced oxidative phosphorylation. J Proteome Res. 2019;18:331–40.

    CAS  PubMed  Google Scholar 

  41. Chearwae W, Bright JJ. PPARgamma agonists inhibit growth and expansion of CD133+ brain tumour stem cells. Br J Cancer. 2008;99:2044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo F, Ren X, Dong Y, Hu X, Xu D, Zhou H, et al. Constitutive expression of PPARγ inhibits proliferation and migration of gastric cancer cells and down-regulates Wnt/β-Catenin signaling pathway downstream target genes TERT and ENAH. Gene. 2016;584:31–37.

    Article  CAS  PubMed  Google Scholar 

  43. Moon HS, Guo DD, Lee HG, Choi YJ, Kang JS, Jo K, et al. Alpha-eleostearic acid suppresses proliferation of MCF-7 breast cancer cells via activation of PPARgamma and inhibition of ERK 1 / 2. Cancer Sci. 2010;101:396–402.

    Article  CAS  PubMed  Google Scholar 

  44. Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, et al. A new prognostic risk model based on PPAR pathway-related genes in kidney renal clear cell carcinoma. PPAR Res. 2020;2020:6937475.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Frey MK, Pothuri B. Homologous recombination deficiency (HRD) testing in ovarian cancer clinical practice: a review of the literature. Gynecologic Oncol Res Pract. 2017;4:4.

    Article  Google Scholar 

  46. Lotan TL, Kaur HB, Salles DC, Murali S, Schaeffer EM, Lanchbury JS, et al. Homologous recombination deficiency (HRD) score in germline BRCA2- versus ATM-altered prostate cancer. Mod Pathol: Off J U S Can Acad Pathol, Inc. 2021;34:1185–93.

    Article  CAS  Google Scholar 

  47. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2016;22:3764–73.

    Article  CAS  Google Scholar 

  48. Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012;2:366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hamid O, Carvajal RD. Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy. Expert Opin Biol Ther. 2013;13:847–61.

    Article  CAS  PubMed  Google Scholar 

  50. Kammerer-Jacquet SF, Deleuze A, Saout J, Mathieu R, Laguerre B, Verhoest G, et al. Targeting the PD-1/PD-L1 pathway in renal cell carcinoma. Int J Mol Sci. 2019;20:1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu YM, Ge JY, Chen YF, Liu T, Chen L, Liu CC, et al. Combined single-cell and spatial transcriptomics reveal the metabolic evolvement of breast cancer during early dissemination. Adv Sci (Weinh, Baden-Wurtt, Ger). 2023;10:e2205395.

    Google Scholar 

  52. Ma L, Heinrich S, Wang L, Keggenhoff FL, Khatib S, Forgues M, et al. Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer. Nat Commun. 2022;13:7533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sathe A, Mason K, Grimes SM, Zhou Z, Lau BT, Bai X, et al. Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-associated SPP1+ macrophages and fibroblasts. Clin Cancer Res: Off J Am Assoc Cancer Res. 2023;29:244–60.

    Article  CAS  Google Scholar 

  54. Zhang D, Lu W, Cui S, Mei H, Wu X, Zhuo Z. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq. J Ovarian Res. 2022;15:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu J, Chen Z, Bao L, Zhou L, Hou Y, Liu L, et al. Single-cell transcriptome analysis reveals intratumoral heterogeneity in ccRCC, which results in different clinical outcomes. Mol Ther : J Am Soc Gene Ther. 2020;28:1658–72.

    Article  CAS  Google Scholar 

  56. Lv Q, Dong F, Zhou Y, Cai Z, Wang G. RNA-binding protein SORBS2 suppresses clear cell renal cell carcinoma metastasis by enhancing MTUS1 mRNA stability. Cell Death Dis. 2020;11:1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ni T, Guo D, Tan L, Xiao Z, Shi Y. NPSR1-AS1 activates the MAPK pathway to facilitate thyroid cancer cell malignant behaviors via recruiting ELAVL1 to stabilize NPSR1 mRNA. Cell Cycle (Georget, Tex). 2022;21:439–49.

    Article  CAS  Google Scholar 

Download references

Funding

This article was funded by the Science and Technology Project of Nantong City: JC2021183.

Author information

Authors and Affiliations

Authors

Contributions

YW & GHC: manuscript writing/editing/revising; YW & QWX: data collection or management; YW & XYZ: data analysis; BYZ & XW: protocol/project development. All the co-authors agreed to publish the final version of this manuscript.

Corresponding authors

Correspondence to Bingye Zhu or Xiang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Research Ethics Committees of the Affiliated Hospital of Nantong University and the informed consent of all participating subjects was obtained.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, X., Chen, G. et al. Integrated analyses reveal the prognostic, immunological features and mechanisms of cuproptosis critical mediator gene FDX1 in KIRC. Genes Immun 24, 171–182 (2023). https://doi.org/10.1038/s41435-023-00211-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-023-00211-0

This article is cited by

Search

Quick links