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Resistance to M. tuberculosis, often referred to as “RSTR” in the literature, is being increasingly studied because of its potential
relevance as a clinical outcome in vaccine studies. This review starts by addressing the importance of epidemiological
characterization of this phenotype, and ongoing challenges in that characterization. Then, this review summarizes the extant
genetic and genomic studies of this phenotype, including heritability studies, candidate gene studies, and genome-wide
association studies, as well as whole transcriptome studies. Findings from recent studies that used longitudinal characterization of
the RSTR phenotype are compared to those using a cross-sectional definition, and the challenges of using tuberculin skin test and
interferon-gamma release assay are discussed. Finally, future directions are proposed. Since this is a rapidly evolving area of public
health significance, this review will help frame future research questions and study designs.
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INTRODUCTION
Tuberculosis (TB) remains a major public health burden globally,
with roughly one-quarter to one-third of the world infected by the
disease-causing bacterium Mycobacterium tuberculosis (Mtb). It
remains a critical public health issue because it one of the top
infectious disease causes of mortality worldwide, in recent years
falling a close second only to COVID-19 in mortality [1]. While it its
public health significance is great, there is still a great need for
improved treatment and vaccination strategies [2], making the
identification of susceptibility factors a major focus of basic
science research.
After exposure to an infectious tuberculosis (TB) case, there are

three possible outcomes: resistance or early clearance of the
bacillus, asymptomatic or latent Mtb infection (LTBI) that can
persist for decades, or symptomatic ‘active TB’, which includes
pulmonary disease that can result in further transmission. Active
TB is manifested typically through a severe productive cough
(pulmonary TB), though it can also affect other organ systems
(extrapulmonary TB), and it is also commonly characterized by
fever, weight loss, night sweats, and other clinical characteristics
common to respiratory infectious diseases. Resistance to infection
is seen in individuals who are initially uninfected based on
standard diagnostic tests such as the tuberculin skin test (TST)
and/or interferon-gamma release assay (IGRA), and then remain
negative. Some individuals may test negative initially, but within
months, or perhaps even longer, convert to an LTBI state (Fig. 1).
While both the uninfected state and LTBI state are asymptomatic,
LTBI individuals have a 10% lifetime risk of progression to active
symptomatic TB.
While previous TB research focused primarily on factors

associated with the transition from LTBI to active TB disease,
recent attention has turned to factors associated with resistance to

developing LTBI after exposure, as it would provide an appealing
target for prevention, specifically through vaccine development
and host-directed therapies [3]. The underlying premise is that
targeting this stage of earlier pathogenesis, the progression from
the uninfected to the infected state, might prevent LTBI and
ultimately progression to disease [4]. This is similar in principle to
the identification of biologic mechanisms that prevent HIV
infection (as opposed to development of full-blown disease) that
has been harnessed as a treatment modality [5]. A vaccine that
prevents infection would be easier to study in clinical trials, since
infection events are more common than disease events, and
indeed, such studies are ongoing [4]. Epidemiologically, this
resistance phenotype has also gained attention in understanding
annual risk of infection [6]. Accurate estimates of the annual risk of
infection are important for understanding the global burden of
disease and for developing public health strategies to slow TB
transmission. Understanding LTBI, and in converse resistance to
LTBI, is critical for understanding the complexity of immune
responses in TB pathogenesis [3, 7]. Genetics and genomics
provide one perspective into innate biologic factors that influence
resistance, and thus are one avenue into target discovery, just like
the original discovery of the CCR5 HIV-protective variant.
Identification of epidemiological factors associated with this

‘resistance’ phenotype has been challenging because of the wide
variety of phenotype definitions used across studies [8], described
in more detail below. Multiple studies have not identified clear
epidemiologic factors that differentiated resisters from LTBIs
[9–12]. A multinational study identified relationship to the index
case and alcohol use as potential factors associated with
resistance to infection, though these were no longer significant
when considered in a multivariable model [13]. One study found
that BCG vaccination was associated with resistance [14], though

Received: 9 January 2023 Revised: 3 April 2023 Accepted: 14 April 2023
Published online: 22 April 2023

1Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA. 2Division of Infectious Diseases and HIV Medicine,
Department of Medicine, Case Western Reserve University, Cleveland, OH, USA. ✉email: cmj7@case.edu

www.nature.com/geneGenes & Immunity

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41435-023-00204-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41435-023-00204-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41435-023-00204-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41435-023-00204-z&domain=pdf
http://orcid.org/0000-0002-9763-5023
http://orcid.org/0000-0002-9763-5023
http://orcid.org/0000-0002-9763-5023
http://orcid.org/0000-0002-9763-5023
http://orcid.org/0000-0002-9763-5023
https://doi.org/10.1038/s41435-023-00204-z
mailto:cmj7@case.edu
www.nature.com/gene


this study used a different clinical definition and it is not clear how
this might have affected that finding (see further discussion
below). Age might be an important factor since it is associated
with time to TST conversion [15] as well as the aforementioned
potential effect of BCG [14], though the other studies did not
replicate this. Age as a potential confounder is noteworthy since it
has also been proposed as a potential confounder of TB (disease)
genetics studies [16]. While time spent on anti-retroviral treatment
might be a potential factor [12], another study found no
association between HIV infection (regardless of treatment) and
resistance [17], so the importance of HIV infection itself is not well
understood.
The ‘resister’ phenotype is also becoming the focus of genetic

and genomic studies. In fact, the first study of this phenotype was
actually a genetic study [18], and it was conducted prior to
detailed epidemiological investigations. When designing and
interpreting these studies, the definition of this phenotype is
critical. In this review, first we focus on phenotype definition, then
we turn our attention to current findings and potential future
directions. While the focus of this paper is on tuberculosis, these
principles are generally relevant to the genetic study of infectious
diseases in general.

RESISTANCE TO INFECTION: STUDY DESIGN IS CRITICAL
Individuals who despite prolonged exposure to infectious TB cases
continue to have a persistently negative tuberculin skin test (TST)
or interferon-γ response assay (IGRA) are of particular interest as
they may help inform prevention strategies. Such individuals are
presumed resistant to latent Mtb infection (RSTR) (Fig. 1). Controls
(non-RSTR) would then be individuals who do not remain TST-/
IGRA- after exposure. While this sounds simple, there are many
elements of this definition that are critical and also sometimes
challenging to implement. Epidemiological definitions in a variety
of settings and immunological implications have been discussed
at length in other reviews [3, 7, 8], so here we will briefly
summarize (Table 1).

Exposure
In order to be considered a RSTR, exposure to an infectious TB
case must be clearly established. As seen across the studies
summarized in our review [8], different studies have approached
this documentation of exposure differently. In close contact
settings such as households, aspects of the TB diagnosis in the
index case (culture confirmation, microbial load, etc.) are
important, since these variables reflect potential infectiousness
of that index case. In addition, data on proximity to the index TB
case are also important, as they may additionally reflect risk of
high intensity exposure. By contrast, in high transmission
community-based settings, there is no index case. However, a
community-based study in South Africa, a hyper-endemic setting,
stated that transmission occurs more frequently in the community
than in the household, and this transmission was verified based on
positive antibody titers in TST-/IGRA- subjects [12]. A high degree
of exposure may also result from certain employment settings,
especially where TB is endemic [11]. However, no design is perfect.
The household contact design does not guarantee transmission
[19], and in populations of low endemicity, it is not clear that a
community cohort would have sufficient exposure to truly
characterize TST-/IGRA- individuals as “resistant” to infection.
Another proxy for exposure is age. As described above, some

studies suggest that age might be an important risk factor for TST/
IGRA conversion. Many of the other studies where age was not
found to be a factor only included adults. Thus, age might be an
appropriate variable to consider as an indicator of lifetime
exposure. A recent simulation study has suggested that mis-
classification of exposure in cases and controls can bias genetic
association study results [20, 21], so documentation of exposure is
not a trivial point.

Duration of follow-up
The duration of follow-up in studies of “resisters” or “early
clearance” has varied across studies. Cross-sectional studies are
insufficient; exposure to a TB case might not translate into a
positive test (IGRA and/or TST) in the contact until a few weeks
later. Some studies have limited follow-up to 3 months after
exposure [14], which is when potentially most conversions to
positive TST/IGRA occur. However, our studies [15, 22] show that
conversion to a positive test can occur 6 months or more from
initial diagnosis of the TB case. Other studies have used 12 [10, 12]
or 24 [15] months of follow-up. Our long term follow-up study [17]
shows that conversion happens even several years (with an
average length of follow-up of 9–10 years) after that initial
exposure. In that case, acquisition of infection is likely due to
exposure to some other TB case other than the original index,
which may be more similar to the high endemicity situation
described above. In either case, the point remains: cross-sectional
studies and/or short-term follow-up (less than 6 months) might be
insufficient for a strict RSTR definition. Lastly, our studies [17] and
others [12] have shown that IGRA results collected over the course
of a year may be unstable and clinical classifications are best made
using the entire collection of data (IGRA and TST if available) over
the course of observation for each subject. If only one or even two
measurements were available, a subject might be misclassified
due to a sporadic value.

Exposure to 
Infectious TB Case

Uninfected 
TST- and/or IGRA-

Infected
TST-+ and/or 
IGRA+

Remain uninfected
Persistently TST- and/or 
IGRA-

Convert to TST+ 
and/or IGRA+

Initial presentation After months of follow-up

Fig. 1 Conceptual model and clinical classification of resistance to
infection. After initial exposure to an active TB case, ascertained
individuals may present as either infected or uninfected based on
the tuberculin skin test (TST) and/or interferon-gamma release assay
(IGRA) such as the QuantiFERON. After this initial exposure, some
individuals remain uninfected, while others convert to positive. This
conversion can happen weeks or even months after that initial
exposure.

Table 1. Critical elements of RSTR identification.

Exposure to active TB • Confirmation of diagnosis of TB case (culture, GeneXpert)
• Clinical indicators of degree of infectiousness (cough, smear positivity, cavitation and other markers of severity on x-
ray)

• High endemicity (community exposure)

Extent of exposure • Proximity to TB case (sharing home/bed, frequency and duration of time spent with TB case)
• High endemicity in community

Durability of response • Follow-up for at least 3 months, preferably longer in settings where TB transmission is high
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Diagnostic tool
Early studies of the RSTR phenotype only used the TST, because
the IGRA hadn’t been developed or refined yet. Thus, many
published genetic studies are based on that phenotype. More
recent studies are transitioning to the IGRA. This raises a new
question, since discordance between these two tests is well-
known [10, 17]. Will studies that use only the IGRA appropriately
reflect ‘resistance’? Should studies use both tests, which might be
logistically challenging, especially for longitudinal study designs?
Ongoing studies need to tackle this question both epidemiologi-
cally and immunologically, to understand how different clinical
definitions might be reflected biologically.

Lingering questions
The discussion above already mentions some key challenges in
defining the RSTR phenotype. The first question is, how long must
one conduct follow-up in a cohort study setting in order to be
sufficiently certain about the characterization of RSTRs? In Stein
et al. [17], ~80% of persistently TST- individuals remained both
TST- and were also IGRA- after an average of 9-10 years post initial
exposure. While that is a high concordance rate, is that high
enough? Certainly it is logistically challenging and expensive to
carry out follow-up studies for a decade or more. Based on their
summary of the literature, Gutierrez et al. [8] advocate for at least
1 year of follow-up, since that is the period covering the majority
of TST/IGRA conversions post-exposure. Kroon et al. [12]
additionally advocate for the recruitment of especially high risk
individuals, particularly HIV-infected, who are more likely to
convert their TST/IGRA in a shorter amount of time. It is striking
that antibody signatures identified in HIV-infected resisters with
shorter follow-up are very similar to those found in the Ugandan
long-term follow-up study [23], suggesting that at least this aspect
of biological mechanism is robust to duration of follow-up as well
as exposure (household vs community). It is also quite possible
that additional genomic studies, building on those described
below, may elucidate the importance of phenotypic stringency on
biological interpretation. Additional long-term follow-up studies
that quantify the conversion rate as a function of time since initial
exposure (in household contact studies) or initial ascertainment
(for community-based studies) are needed to better understand
this issue.
Second, the question about TST/IGRA discordance and the field

transitioning to the IGRA is not trivial. The objections to the TST
have been based primarily on concerns of false positives due to
BCG vaccination and/or boosting. However, many studies have
not found a bias in TST conversion rates due to history of BCG
vaccination, and studies of boosting suggest this effect is minimal
[24].
Third, while above we outline variables that should be used in

defining sufficient exposure, little work has been done examining
the degree of exposure and whether this has an impact. While the
Ugandan studies examined a quantitative epidemiologic risk score
to define degree of exposure [17, 25], another large multinational
study categorized exposure into low, medium, and high levels
[13]; perhaps these quantitative levels would be helpful for future
genetic analyses.

How is TB unique?
From a genetic epidemiological standpoint, it is important to
consider which of these aspects of study design and phenotype
definition are also relevant to the genetic study of other infectious
diseases. The first point to consider is mode of transmission. TB is
spread through airborne droplets, which is an indirect mode of
transmission. This is one of the reasons why quantification of
exposure is challenging, because it is not a direct mode of
transmission as is seen in sexually transmitted diseases and other
viral infections. Certainly establishing exposure for those infections
is also challenging but entails a different strategy, which is beyond

the scope of this review. Other infectious diseases with indirect
transmission might be vector-borne or vehicle-borne, where
establishing exposure is likely even more difficult, though as
pointed out by the aforementioned simulation study [20], still
important. The prevalence of infection and disease might also be a
consideration when considering exposure. Second, not all
infectious diseases have a stage of pathogenesis where the
pathogen is present but does cause symptoms. Influenza and
COVID-19 are examples of viral infectious where there is an
asymptomatic state, and resistance in hepatitis C has been
examined in terms of “spontaneous clearance” [20] (similar to the
“early clearance” term coined in the Mtb resistance field [14]). In
this same vein, different types of pathogens (bacteria, viruses,
parasites) have different stages of pathogenesis, which ultimately
could affect clinical definitions in genetic studies.

RECENT GENETIC AND GENOMIC FINDINGS
Heritability – impact on gene mapping
A recent review by Abel et al. [16] nicely summarizes heritability
estimates across a number of studies, with a variety of phenotype
definitions and study designs, and in a variety of global
populations. These values ranged from as low as 39% (for IGRA
results) to 92% (for quantitative TST result). In our recent study,
where we defined RSTR based on our long-term follow-up study
[17], we found an estimate of 48% when including both HIV-
infected and HIV-uninfected individuals in the analysis. In a sense,
our RSTR definition is a composite phenotype, requiring negative
results on both TST and IGRA, so not directly comparable to
previous studies, but it also has longitudinal stringency. The
heritability analysis of other TB phenotypes presented in McHenry
et al. illustrates that strictness of phenotype yields higher
heritability estimates. As a result, higher heritability estimates
result in higher power for gene mapping. This is important for
interpretation of the extant literature.

Candidate gene and genome-wide association studies (GWAS)
Most of the initial studies examining LTBI (or its converse, lack of
infection) were based on cross-sectional studies, sometimes in low
transmission settings (Table 2). Other studies examined TST
longitudinally, but did not use IGRA in characterization of infected
and uninfected individuals because that assay was unavailable at
the time. Only recently as IGRAs became a standard part of
epidemiological studies have genetic studies also characterized
subjects according to this measure. Studies conducted early on
were primarily focused on candidate genes and genome-wide
linkage studies, and more recently as genotyping costs have come
down considerably, genome-wide association studies have been
conducted. This contrast in approach makes comparison across
papers difficult, as candidate gene studies required less stringent
p-values for declaring significance, and linkage studies also require
a lower significance threshold than GWAS. Linkage studies also
have low resolution for identifying common variants. The passage
of time has affected the available phenotyping strategies in
addition to the genotyping technology. If our goal is to use
genetics to identify potential therapeutic targets, replication at the
gene level is of primary interest. Frankly, this is the only way to
consider replication between linkage results and association
studies, since linkage studies mostly employ allele-sharing
between relative pairs as the statistic of interest, and as such do
not identify an effect allele. In addition, targeted candidate gene
studies might employ different strategies for selecting single
nucleotide polymorphism (SNP) markers than GWAS studies.
A few observations can be made based on the results of the

literature summarized in Table 2. This table includes the primary
findings of the cited studies, and also indicates which of these
findings were replicated (at p < 0.05) in a recent GWAS [26] where
the phenotype was based on stringent follow-up and both TST
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and IGRA [17]. Thus, this enables examination of replication by
phenotype definition. First, there was one locus replicated
between original linkage studies using TST only, and that was
on 5p15. This locus appears to be robust because it was observed
in two different populations (South Africa and Uganda), using
slightly different TST-based definitions (persistently negative TST
and continuous value of TST induration), and most recently
replicated in a GWAS that used the stringent definition of TST/
IGRA persistent negativity. Second, some of the loci originally
identified by genome-wide linkage studies (2q21-q24 and 11p14),
again using different variations of the TST-based definition
(longitudinal and cross-sectional, respectively), were also repli-
cated by the recent GWAS that used the stringent TST/IGRA
definition. Third, the GWAS studies uncovered significant loci that
were not identified by the genome-wide linkage studies. This is
quite likely due to the increased power and resolution of
association analysis methodology. It is also possible that the more
stringent definitions yielded increased statistical power [26].
However, with only two such studies, this still provides justification
for additional GWAS studies. The consistency between the older
TST-based linkage and association studies and McHenry et al. [26]
suggests two things: One, the high heritability also identified by
McHenry et al. [26] suggests that this strict phenotype may have
increased power to detect effects. Two, since these loci were
originally identified with a variety of phenotype definitions but still
attained genome-wide significance, perhaps effects seen at this
stringent a threshold may be robust to phenotype definition.
The non-replication between the McHenry et al. [26] and

Quistrebert et al. [27] studies is curious and deserves particular
attention. The Quistrebert et al. [27] study was interesting in that it
used 3 different populations for internal replication, with rigorous
criteria for TST and IGRA positivity, but two of the three cohorts
only utilized TST and IGRA at baseline with no longitudinal
assessment. The lack of replication of findings between the two
GWAS studies reveals that the impact of a stringent phenotype
definition might increase power to detect effects, but that does
not guarantee replication, though this lack of replication may also

suggest genetic heterogeneity underlying RSTR. It is also unclear
whether the lack of replication between the two GWAS studies
was due to difference in phenotypic characterization (cross-
sectional vs long-term follow-up) or perhaps ethnic background.
Certainly, the use of 3 ethnically diverse populations within the
Quistrebert study is a major strength. Since the study focused on
the loci that were internally replicated, it is unknown if there
might be replication with some of the other loci listed in Table 2.
Furthermore, it is quite possible that there are additional as-yet
undetected genetic associations with the RSTR phenotype.
Indeed, the analysis by Dawkins et al. [28] revealed genetic
associations with HLA that had not been seen in prior studies, and
the authors hypothesized that these associations were detected
because of the well-defined phenotypic contrasts.
The validity of these genetic associations is also difficult to

assess for a few reasons. First, as is very clear from the citation list,
relatively few study groups have conducted large scale studies of
this phenotype, therefore there are relatively few opportunities for
replication. This was a stated weakness of the Ugandan GWAS –
the analysis only contained a discovery sample with no replication
sample. Second, the functional implications of these loci have not
been delineated. If the goal is to use such findings to identify
therapeutic targets, this is an important next step. Most likely,
some of these studies have been attempted and/or are ongoing,
so it will be essential to keep a close eye on the literature.
Intriguingly, the loci identified by these studies are distinct from
those associated with TB susceptibility [29–31], suggesting that
the biologic underpinnings of resistance are quite different.

Transcriptomic studies
As of this writing, only a few RNA expression studies have been
published, though there are likely many more ongoing (Table 3).
While there are only a few studies, they also include functional
validation, which is an important step towards the ultimate goal of
identifying biologic targets. The first study used microarray
technology, which was cutting-edge at the time, and the
phenotype was based on TST only, because again, QFT was not

Table 2. Summary of genetic studies.

Type of study Gene/Locus Chromosomal
region(s)

Phenotype Population References

Candidate gene ULK1 12q24 TST positivity Seattle [58, 59]

SLC6A3 5p15 Persistent TST- Uganda [60]

IL10 1q32 TST positivity Ghana [61]

Genome-wide linkage GTDC1,ZEB2 2q21-q24*
5p13-q22*

Persistent TST- Uganda [18, 62, 63]

TST1*€ 11p14* TST positivity (cross-
sectional)

South Africa [62]

TST2* € 5p15* Reactivity (quantitative) South Africa [64]

Genome-wide
association

IL9* 5q31* TST positivity and
reactivity

Tanzania and Uganda [41]

10q26.2 TST and IGRA positivity South Africa, France,
Vietnam

[27]

ABHD6
THRB
LINC01861 ZHX3,
LPIN3, KIF6
FAF2

3p14
3p24-p22
5q33
20q12
6p21
5q35

RSTR Uganda [26]

HLA-DRB1, DQB1,
and DPB1£

6q21 RSTR Uganda [28]

*McHenry et al. [26] replicated this effect using the more stringent phenotype of TST and IGRA negative for average of 10 years follow-up
£Replication in McHenry et al. [26] was not attempted because that dataset was used in this analysis.
€TST1 and TST2 are positional candidate regions identified by genome-wide linkage analysis, not specific gene names.
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used at the time [32]. This study examined macrophage gene
expression after stimulation with Mtb in vitro. Several gene sets
were differentially expressed, but the most notable pathway was
the histone deacetylase pathway, and these findings were
validated with immunologic and microbiologic experiments.
The second two studies utilized RNA-seq technology and the

stricter RSTR phenotype [17] described above; the first of these
examining basal gene expression levels in macrophages [33], and
the second examining expression responses after these macro-
phages were stimulated with Mtb in vitro [34], similar to the
aforementioned microarray study. The study examining basal
gene expression levels also included two populations (Ugandan
RSTRs and South African miners with the RSTR phenotype), and
identified gene sets that were associated with carbon metabolism
and free fatty acid enrichment that differentiated RSTRs and LTBI
in both populations. These hypotheses were validated with a
variety of functional validation experiments as well as candidate
gene association analysis using SNP data. In the study where gene
expression after stimulation with Mtb in vitro was examined, again
no single gene differences were identified after multiple testing
correction, but gene set and pathway enrichment analysis
revealed several pathways of interest, most notably TNF. Valida-
tion was conducted again using SNP association analysis, and
these analyses revealed associations with ABCA1 and DUSP2. Note
that the RNA-seq study [34] did not replicate the microarray study
[32]; it is unknown whether this lack of replication was due to
small sample size, different phenotype definition, or different
technology. These questions can only be elucidated with
additional studies and functional validation.
As of the writing of this review, all three published transcrip-

tomic studies have been based in Uganda (with one replicating
findings in South Africa), and they have differed by technology,
phenotype, and tissue of interest (stimulated or unstimulated
macrophages). Thus, it is impossible to generalize these findings
to other populations, either those with different phenotype
definitions or those with different exposure profiles. This will
certainly be a focus of future research. However, it is worth noting
that the most novel findings from these current transcriptomic
studies are different from those identified with TB disease [35–40].

FUTURE DIRECTIONS
While there are no published studies as yet examining epigenetic
influences on the RSTR phenotypes, there is another clinical
framework that provides premise for these studies. Progression, or
non-progression, to TB disease, in the setting of HIV infection is
another model for resistance. When immunosuppressed individuals
living in TB-endemic settings do not develop TB disease or LTBI
despite exposure and high risk, this provides a model of resistance
that is useful for gene mapping [41, 42]. Two studies under this
paradigm have revealed important epigenetic effects underlying
resistance to infection. First, a methylome-wide study, examining
methylation markers across the genome, identified methylation
markers associated with TB susceptibility as well as SNP markers that
interacted with methylation markers to increase susceptibility for TB
[43]. Second, a study examining chromatin accessibility using ATAC-
seq identified differential chromatin accessibility in different clinical
groups [44]. Certainly future studies of the RSTR phenotype will utilize

these technologies to better understand the impact of epigenetics in
the context of genetic and transcriptomic variation. In addition, eQTL
studies may begin to integrate SNP association and transcriptomic
data, which will enable interpretation of the role of both types of
variation in clinical outcome [45]. The integration of SNP and RNA
data will provide insight into function, which is essential for
developing therapeutic strategies.
In addition, the lack of functional validation of findings from

genetic studies illustrate the challenge in going from an association
(or linkage) effect to a biologic readout. One approach that shows
promise is using genetic data from a GWAS to validate transcriptomic
findings, as in two of our studies [33, 34]. Another approach is to
utilize genetic variation data within a bioinformatic approach that
integrates data generated across other ‘omic platforms. Analyses that
examine genetic variants one by one overlook possible epistatic and
epigenetic effects, a point mentioned by another recent review in
this area [16]. Systems biology approaches that incorporate genetic
and genomic data along with other ‘omic (proteomic, epigenetic, etc)
data may reveal interactions between these various components of a
comprehensive biologic model [46–56]. Yet another related approach
that may point to disease biology is to examine enriched gene sets
and pathways [30]. This has proven fruitful in both our GWAS [26]
and transcriptomic studies [32–34], especially because the gene
expression studies did not reveal any single gene effects that were
significant after multiple testing correction. Ultimately, genomic data
are one piece in the puzzle, and should be integrated with the
findings from immunologic and ‘omic strategies.
While replication analyses have been conducted independently,

another future goal would be a cross-population meta-analysis.
The challenge here would be accounting for variability in
phenotype definition. Given some of the replication seen between
some of the studies using cross-sectionally defined phenotypes
and longitudinally-defined phenotypes, it would be interesting to
see if GWAS using cross-sectional phenotypes may add some
insight to the question about robustness of genetic results in the
context of phenotype definition. A recent meta-analysis of TB
disease GWAS studies was conducted [57], and it illustrated the
challenges of phenotype definitions different by geographic
location. Still, this goal is commendable because it may bring to
the fore genetic associations that did not attain significance after
multiple testing correction in samples independently, but at lower
yet suggestive levels, these loci may still be clinically and
biologically meaningful. Such results might not be extracted at
lower levels of significance unless they were combined with other
samples. However, for a meta-analysis to be valuable, first,
genomic studies of the RSTR phenotype need to be conducted
more diverse populations. As noted above, the currently published
findings come from a few well-characterized but globally
restricted populations. For a biologic target to have any
translatability, it needs to be transferable across global popula-
tions. It is also worth re-analyzing published TB GWAS data (where
disease was the focus, not resistance to infection) to examine
whether genes associated with resistance might also be
associated with disease progression at lower levels of significance
and/or different directions of effect. Lastly, it is of interest to
understand if the regions associated with resistance have arisen
due to selective pressure. Signatures of selection have been
observed in regions previously associated with TB disease

Table 3. Results of transcriptomic studies.

Methodology Phenotype Population Findings References

Microarray Persistent TST- Uganda Several gene sets differentially expressed, most notably the
histone deacetylase pathway

[32]

RNA-seq RSTR Uganda and
South Africa

Carbon metabolism and free fatty acid transcriptional differences,
PRKAG and AMPK pathway

[33]

RSTR Uganda TNF pathway, ABCA1 and DUSP2 genes [34]
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resistance in the context of HIV infection [42]. Addressing this
question would entail the analysis and collection of new data, and
is beyond the scope of this review, but a worthy question for
future studies.

CONCLUSION
Genetic and genomic studies of resistance to Mtb infection are
increasingly important as they become part of multidisciplinary to
identify potential vaccine and other therapeutic targets. Relatively
few studies have examined this strictly defined phenotype, though
recent work suggests that genetic findings may be potentially robust
to phenotype definition. Future efforts must attempt to use similarly
stringent phenotype definitions in order to determine the true
impact on reliability and validity of genetic and transcriptomic
associations. In addition, studies are needed in a variety of global
settings in order to better understand the impact of Mtb genetic
variation and other environmental factors the reliability and validity
of these genetic associations. These next steps are critical when
considering potential translation of these findings to at-risk human
populations. Moreover, it is important to understand how these
results compare to those currently being harnessed as host-directed
therapy and vaccine targets for preventing disease progression as
opposed to maintaining resistance to infection. However, before the
findings from these studies are translatable, there must be
consideration of how such prevention strategies fit in the scope of
existing strategies to prevent progression to TB disease. The public
health strategies may differ depending on the biologic commonal-
ities from the results of ongoing and future studies, and this will
impact how potential host-directed therapies and/or novel vaccine
approaches are implemented.
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