Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor resident, TRA anti-viral CDR3 chemical sequence motifs are associated with a better breast cancer outcome

Abstract

While for certain cancers, such as cervical cancer, the link to viral infections is very strong and very clear, other cancers represent a history of links to viral infections that are either co-morbidities or drive the cancer in ways that are not yet fully understood, for example the “hit and run” possibility. To further understand the connection of viral infections and the progress of breast cancer, we identified the chemical features of known anti-viral, T-cell receptor alpha chain (TRA) complementarity determining region-3 (CDR3) amino acid sequences among the CDR3s of breast cancer patient TRA recombinations and assessed the association of those features with patient outcomes. The application of this novel paradigm indicated consistent associations of tumor-derived, anti-CMV CDR3 chemical sequence motifs with better breast cancer patient outcomes but did not indicate an opportunity to establish risk stratifications for other cancer types. Interestingly, breast cancer samples with no detectable TRA recombinations represented a better outcome than samples with the non-anti-CMV CDR3s, further adding to a rapidly developing series of results allowing a distinction between positive and possibly harmful cancer immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: KM overall survival (OS) and disease-free survival (DFS) analyses of BRCA case IDs with anti-CMV TRA CDR3 chemical sequence motifs in primary tumor samples.
Fig. 3: KM OS and DFS analyses of TCGA-CESC case IDs with anti-CMV TRA CDR3 chemical sequence motifs in tumor samples and for other control sets.
Fig. 4: KM analyses of BRCA case IDs with anti-viral TRA CDR3 chemical sequence motifs in tumor samples versus TRA-cold case IDs.

Similar content being viewed by others

Data availability

All data used in the analyses for this report are available in the SOM; and as publicly available information at cbioportal.org.

References

  1. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382:889–99.

    Article  PubMed  Google Scholar 

  2. Bosch FX, Munoz N. The viral etiology of cervical cancer. Virus Res. 2002;89:183–90.

    Article  CAS  PubMed  Google Scholar 

  3. Okunade KS. Human papillomavirus and cervical cancer. J Obstet Gynaecol. 2020;40:602–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sand FL, Kjaer SK, Frederiksen K, Dehlendorff C. Risk of cervical intraepithelial neoplasia grade 2 or worse after conization in relation to HPV vaccination status. Int J cancer J Int du cancer. 2020;147:641–7.

    Article  CAS  Google Scholar 

  5. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.

    Article  CAS  PubMed  Google Scholar 

  6. Mahieux R, Gessain A. HTLV-1 and associated adult T-cell leukemia/lymphoma. Rev Clin Exp Hematol. 2003;7:336–61.

    PubMed  Google Scholar 

  7. Giam CZ, Semmes OJ. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses. 2016;8:161.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Azran I, Schavinsky-Khrapunsky Y, Aboud M. Role of Tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology. 2004;1:20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Matsuoka M, Jeang KT. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene. 2011;30:1379–89.

    Article  CAS  PubMed  Google Scholar 

  10. Satou A, Nakamura S. EBV-positive B-cell lymphomas and lymphoproliferative disorders: Review from the perspective of immune escape and immunodeficiency. Cancer Med. 2021;10:6777–85.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xie Y. Hepatitis B virus-associated hepatocellular carcinoma. Adv Exp Med Biol. 2017;1018:11–21.

    Article  CAS  PubMed  Google Scholar 

  12. Shin EC, Sung PS, Park SH. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat Rev Immunol. 2016;16:509–23.

    Article  CAS  PubMed  Google Scholar 

  13. Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016;64:S84–S101.

    Article  CAS  PubMed  Google Scholar 

  14. Irshad M, Gupta P, Irshad K. Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection. World J Hepatol. 2017;9:1305–14.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zamor PJ, deLemos AS, Russo MW. Viral hepatitis and hepatocellular carcinoma: Etiology and management. J Gastrointest Oncol. 2017;8:229–42.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fung J, Lai CL, Yuen MF. Hepatitis B and C virus-related carcinogenesis. Clin Microbiol Infect. 2009;15:964–70.

    Article  CAS  PubMed  Google Scholar 

  17. Teo WH, Chen HP, Huang JC, Chan YJ. Human cytomegalovirus infection enhances cell proliferation, migration and upregulation of EMT markers in colorectal cancer-derived stem cell-like cells. Int J Oncol. 2017;51:1415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, et al. Targeting the signaling in Epstein-Barr virus-associated diseases: Mechanism, regulation, and clinical study. Signal Transduct Target Ther. 2021;6:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Min BH, Tae CH, Ahn SM, Kang SY, Woo SY, Kim S, et al. Epstein-Barr virus infection serves as an independent predictor of survival in patients with lymphoepithelioma-like gastric carcinoma. Gastric Cancer. 2016;19:852–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lawson JS, Salmons B, Glenn WK. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV). Front Oncol. 2018;8:1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marrao G, Habib M, Paiva A, Bicout D, Fallecker C, Franco S, et al. Epstein-Barr virus infection and clinical outcome in breast cancer patients correlate with immune cell TNF-alpha/IFN-gamma response. BMC cancer. 2014;14:665.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cinatl J Jr., Vogel JU, Kotchetkov R, Wilhelm Doerr H. Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: A novel role for viral infection in tumor progression. FEMS Microbiol Rev. 2004;28:59–77.

    Article  CAS  PubMed  Google Scholar 

  23. Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, et al. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA. 2006;103:13068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai ZZ, Xu JG, Zhou YH, Zheng JH, Lin KZ, Zheng SZ, et al. Human cytomegalovirus-encoded US28 may act as a tumor promoter in colorectal cancer. World J Gastroenterol. 2016;22:2789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gru AA, Haverkos BH, Freud AG, Hastings J, Nowacki NB, Barrionuevo C, et al. The Epstein-Barr Virus (EBV) in T Cell and NK Cell Lymphomas: Time for a Reassessment. Curr Hematol Malig Rep. 2015;10:456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai Q, Chen K, Young KH. Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorders. Exp Mol Med. 2015;47:e133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu H, Luo ML, Desmedt C, Nabavi S, Yadegarynia S, Hong A, et al. Epstein-Barr virus infection of mammary epithelial cells promotes malignant transformation. EBioMedicine. 2016;9:148–60.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Valle Oseguera CA, Spencer JV. Human cytomegalovirus interleukin-10 enhances matrigel invasion of MDA-MB-231 breast cancer cells. Cancer cell Int. 2017;17:24.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shaimerdenova M, Karapina O, Mektepbayeva D, Alibek K, Akilbekova D. The effects of antiviral treatment on breast cancer cell line. Infect Agent Cancer. 2017;12:18.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zaman S, Chobrutskiy BI, Patel JS, Diviney A, Tu YN, Tong WL, et al. Antiviral T cell receptor complementarity determining region-3 sequences are associated with a worse cancer outcome: A pancancer analysis. Viral Immunol. 2020;33:404–12.

    Article  CAS  PubMed  Google Scholar 

  31. Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, et al. VDJdb in 2019: Database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic acids Res. 2020;48(D1):D1057–62.

    Article  PubMed  Google Scholar 

  32. Gill TR, Samy MD, Butler SN, Mauro JA, Sexton WJ, Blanck G. Detection of productively rearranged TcR-alpha V-J sequences in TCGA exome files: Implications for tumor immunoscoring and recovery of antitumor T-cells. Cancer Inf. 2016;15:23–8.

    CAS  Google Scholar 

  33. Samy MD, Tong WL, Yavorski JM, Sexton WJ, Blanck G. T cell receptor gene recombinations in human tumor specimen exome files: Detection of T cell receptor-beta VDJ recombinations associates with a favorable oncologic outcome for bladder cancer. Cancer Immunol, immunotherapy: CII. 2017;66:403–10.

    Article  CAS  Google Scholar 

  34. Patel DN, Yeagley M, Arturo JF, Falasiri S, Chobrutskiy BI, Gozlan EC, et al. A comparison of immune receptor recombination databases sourced from tumour exome or RNAseq files: Verifications of immunological distinctions between primary and metastatic melanoma. Int J Immunogenet. 2021;48:409–18.

    Article  CAS  PubMed  Google Scholar 

  35. Chobrutskiy BI, Zaman S, Tong WL, Diviney A, Blanck G. Recovery of T-cell receptor V(D)J recombination reads from lower grade glioma exome files correlates with reduced survival and advanced cancer grade. J Neurooncol. 2018;140:697–704.

    Article  CAS  PubMed  Google Scholar 

  36. Chobrutskiy A, Chobrutskiy BI, Zaman S, Hsiang M, Blanck G. Chemical features of blood-borne TRG CDR3s associated with an increased overall survival in breast cancer. Breast cancer Res Treat. 2021;185:591–600.

    Article  CAS  PubMed  Google Scholar 

  37. Tong WL, Callahan BM, Tu YN, Zaman S, Chobrutskiy BI, Blanck G. Immune receptor recombinations from breast cancer exome files, independently and in combination with specific HLA alleles, correlate with better survival rates. Breast Cancer Res Treat. 2019;173:167–77.

  38. Clark KR, Tong WL, Callahan BM, Yavorski JM, Tu YN, Blanck G. TRB-J1 usage, in combination with the HLA-A*01:01 allele, represents an apparent survival advantage for uterine corpus endometrial carcinoma: Comparisons with microscopic assessments of lymphocyte infiltrates. Int J Immunogenet. 2019;46:31–37.

    Article  CAS  PubMed  Google Scholar 

  39. Patel AR, Patel DN, Tu YN, Yeagley M, Chobrutskiy A, Chobrutskiy BI et al. Chemical complementarity between immune receptor CDR3s and candidate cancer antigens correlating with reduced survival: evidence for outcome mitigation with corticosteroid treatments. J Biomol Struct Dyn. 2022; 1–9. https://doi.org/10.1080/07391102.2022.2070546.

  40. Hillen F, Baeten CI, van de Winkel A, Creytens D, van der Schaft DW, Winnepenninckx V, et al. Leukocyte infiltration and tumor cell plasticity are parameters of aggressiveness in primary cutaneous melanoma. Cancer Immunol, immunotherapy: CII. 2008;57:97–106.

    Article  Google Scholar 

  41. Richardson AK, Currie MJ, Robinson BA, Morrin H, Phung Y, Pearson JF, et al. Cytomegalovirus and Epstein-Barr virus in breast cancer. PloS one. 2015;10:e0118989.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine. 2022;80:104056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herbein G. High-Risk Oncogenic Human Cytomegalovirus. Viruses. 2022;14:2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soderberg-Naucler C. New mechanistic insights of the pathogenicity of high-risk cytomegalovirus (CMV) strains derived from breast cancer: Hope for new cancer therapy options. EBioMedicine. 2022;81:104103.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jung K, Son MJ, Lee SY, Kim JA, Ko DH, Yoo S, et al. Antibody-mediated delivery of a viral MHC-I epitope into the cytosol of target tumor cells repurposes virus-specific CD8(+) T cells for cancer immunotherapy. Mol Cancer. 2022;21:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang X, Diamond DJ, Forman SJ, Nakamura R. Development of CMV-CD19 bi-specific CAR T cells with post-infusion in vivo boost using an anti-CMV vaccine. Int J Hematol. 2021;114:544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lundstrom K. Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. Int J Mol Sci. 2022;23:15622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank Ms. Corinne Walters for expert management of the administrative and legal aspects of the dataset access-approval process; USF research computing; and the taxpayers of the State of Florida.

Author information

Authors and Affiliations

Authors

Contributions

MJD: Conceptualization; Formal analysis; Methodology; Software; Visualization; Writing - review & editing.: DBK: Formal analysis; Methodology; Software. DNP: Formal analysis; Methodology; Software. MY: Formal analysis; Methodology. MH: Formal analysis; Methodology; Software. GB: Methodology; Project administration; Resources; Supervision; Writing - review & editing.

Corresponding author

Correspondence to George Blanck.

Ethics declarations

Ethics approval

The data used in this report were accessed via NIH dbGaP project approval number 6300. This report represents non-human subjects research, per the dbGaP approval, and as such, there is no consent to participate needed.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, M.J., Kacsoh, D.B., Patel, D.N. et al. Tumor resident, TRA anti-viral CDR3 chemical sequence motifs are associated with a better breast cancer outcome. Genes Immun 24, 92–98 (2023). https://doi.org/10.1038/s41435-023-00201-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-023-00201-2

Search

Quick links