Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of DAMPs and cell death in autoimmune diseases: the example of multiple sclerosis

Abstract

Multiple sclerosis is a chronic neuroinflammatory demyelinating disease of the central nervous system (CNS) of unknown etiology and still incompletely clarified pathogenesis. The disease is generally considered a disorder resulting from a complex interplay between environmental risk factors and predisposing causal genetic variants. To examine the etiopathogenesis of the disease, two complementary pre-clinical models are currently discussed: the “outside-in” model proposing a peripherally elicited inflammatory/autoimmune attack against degraded myelin as the cause of the disease, and the “inside-out” paradigm implying a primary cytodegenerative process of cells in the CNS that triggers secondary reactive inflammatory/autoimmune responses against myelin debris. In this review, the integrating pathogenetic role of damage-associated molecular patterns (DAMPs) in these two scenario models is examined by focusing on the origin and sources of these molecules, which are known to promote neuroinflammation and, via activation of pattern recognition receptor-bearing antigen-presenting cells, drive and shape autoimmune responses. In particular, environmental factors are discussed that are conceptually defined as agents which produce endogenous DAMPs via induction of regulated cell death (RCD) or act themselves as exogenous DAMPs. Indeed, in the field of autoimmune diseases, including multiple sclerosis, recent research has focused on environmental triggers that cause secondary events in terms of subroutines of RCD, which have been identified as prolific sources of DAMPs. Finally, a model of a DAMP-driven positive feed-forward loop of chronic inflammatory demyelinating processes is proposed, aimed at reconciling the competing “inside-out” and “outside-in” paradigms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic presentation of a model approach to immune self-tolerance versus autoimmunity in light of the danger/injury model in Immunology.
Fig. 2: Simplified schematic diagram of a tentative model of cell stress/tissue injury-induced autoimmunity.
Fig. 3: Schematic diagram of tentative model, integrating the role of injury-induced DAMPs into the “inside-out” paradigm of multiple sclerosis pathogenesis.
Fig. 4: Schematic diagram of a tentative model, integrating the role of injury-induced DAMPs into the “outside-in” paradigm of multiple sclerosis pathogenesis.
Fig. 5: Schematic representation of a hypothetical model of a DAMP-driven positive feed-forward loop of chronic inflammatory demyelinating processes, aimed at integrating the “inside-out” and the “outside-in” paradigms in multiple sclerosis pathogenesis: The loop is ignited by environmental factor-mediated stress or injury affecting either the CNS (right side of the figure) or organs in the periphery (left side of the figure) of genetically predisposed individuals.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G, et al. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplant. 1994;57:211–7. http://www.ncbi.nlm.nih.gov/pubmed/8310510.

    Article  CAS  Google Scholar 

  2. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015.

    Article  CAS  PubMed  Google Scholar 

  3. Matzinger P, Kamala T. Tissue-based class control: the other side of tolerance. Nat Rev Immunol. 2011;11:221–30. https://doi.org/10.1038/nri2940.

    Article  CAS  PubMed  Google Scholar 

  4. Matzinger P. Autoimmunity: are we asking the right question? Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.864633/full.

  5. Land W. Allograft injury mediated by reactive oxygen species: from conserved proteins of Drosophila to acute and chronic rejection of human transplants. Part III: interaction of (oxidative) stress-induced heat shock proteins with toll-like receptor-bearing cells. Transplant Rev. 2003;17:67–86. https://linkinghub.elsevier.com/retrieve/pii/S0955470X02000095.

    Article  Google Scholar 

  6. Seong S-Y, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4:469–78. http://www.nature.com/articles/nri1372.

    Article  CAS  PubMed  Google Scholar 

  7. Oppenheim JJ, Tewary P, de la Rosa G, Yang D. Alarmins initiate host defense. Adv Exp Med Biol. 2007:185–94. https://doi.org/10.1007/978-0-387-72005-0_19

  8. Land WG. Damage-associated molecular patterns in human diseases. Volume 1: injury-induced innate immune responses. Cham: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-78655-1.

  9. Land W. Postischemic reperfusion injury to allografts: its impact on T-cell alloactivation via upregulation of dendritic cell-mediated stimulation, co-stimulation, and adhesion. Curr Opin Org Transplant. 1999;118–24. https://journals.lww.com/co-transplantation/Abstract/1999/06000/Postischemic_reperfusion_injury_to_allografts__its.3.aspx.

  10. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–5. https://doi.org/10.1126/science.1071059.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Q, Vignali DAA. Co-stimulatory and co-inhibitory pathways in autoimmunity. Immun. 2016;44:1034–51. https://linkinghub.elsevier.com/retrieve/pii/S1074761316301467.

    Article  CAS  Google Scholar 

  12. Khan U, Ghazanfar H. T lymphocytes and autoimmunity. Int Rev Cell Mol Biol. 2018:125–68. https://linkinghub.elsevier.com/retrieve/pii/S1937644818300583.

  13. Hasegawa H, Matsumoto T. Mechanisms of tolerance induction by dendritic cells in vivo. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.00350/full.

  14. Land WG. Antigen in the presence of DAMPs induces immunostimulatory dendritic cells to promote destructive adaptive immune responses. In: Damage-associated molecular patterns in human diseases, Vol 1. Springer International Publishing AG; 2018. p. 749–90. https://link.springer.com/chapter/10.1007/978-3-319-78655-1_32.

  15. Land WG. Antigen in the absence of DAMPs promotes immune tolerance: the role of dendritic cells and regulatory T cells. In: Damage-associated molecular patterns in human diseases. Springer International Publishing AG; 2018. https://doi.org/10.1007/978-3-319-78655-1_33.

  16. Land WG. Damage-associated molecular patterns in human diseases. Vol. 3: antigen-related disorders. Springer Nature Switzerland AG; 2023, in press.

  17. Goldenberg MM. Multiple sclerosis review. P T. 2012;37:175–84. http://www.ncbi.nlm.nih.gov/pubmed/22605909.

    PubMed  PubMed Central  Google Scholar 

  18. Katz Sand I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol. 2015;28:193–205. http://www.ncbi.nlm.nih.gov/pubmed/25887774.

    Article  PubMed  Google Scholar 

  19. Glatigny S, Bettelli E. Experimental autoimmune encephalomyelitis (EAE) as animal models of multiple sclerosis (MS). Cold Spring Harb Perspect Med. 2018;8:a028977. http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a028977.

  20. Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the pathoetiology of multiple sclerosis: has the tail been wagging the mouse? Front Immunol. 2020;11. https://www.frontiersin.org/article/10.3389/fimmu.2020.572186/full.

  21. Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, et al. Pre-clinical and clinical implications of “inside-out” vs. “outside-in” paradigms in multiple sclerosis etiopathogenesis. Front Cell Neurosci. 2020;14. https://doi.org/10.3389/fncel.2020.599717/full.

  22. Luchicchi A, Preziosa P, ’t Hart B. Editorial: “Inside-Out” vs “outside-in” paradigms in multiple sclerosis etiopathogenesis. Front Cell Neurosci. 2021;15. https://doi.org/10.3389/fncel.2021.666529/full.

  23. Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener. 2022;17:34 https://doi.org/10.1186/s13024-022-00538-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alfredsson L, Olsson T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb Perspect Med. 2019;9:a028944 https://doi.org/10.1101/cshperspect.a028944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goris A, Vandebergh M, McCauley JL, Saarela J, Cotsapas C. Genetics of multiple sclerosis: lessons from polygenicity. Lancet Neurol. 2022;21:830–42. https://linkinghub.elsevier.com/retrieve/pii/S1474442222002551.

    Article  CAS  PubMed  Google Scholar 

  26. Chan VS-F. Epigenetics in multiple sclerosis. Adv Exp Med Biol. 2020:309–74. https://doi.org/10.1007/978-981-15-3449-2_12.

  27. Vojdani A. A potential link between environmental triggers and autoimmunity. Autoimmune Dis. 2014;2014:1–18. http://www.hindawi.com/journals/ad/2014/437231/.

    Article  Google Scholar 

  28. Land WG. Role of damage-associated molecular patterns in light of modern environmental research: a tautological approach. Int J Environ Res. 2020;14:583–604. https://doi.org/10.1007/s41742-020-00276-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Linkermann A, Stockwell BR, Krautwald S, Anders H-J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol. 2014;14:759–67. http://www.nature.com/articles/nri3743.

    Article  CAS  PubMed  Google Scholar 

  30. Tang D, Kang R. Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29:347–64. http://www.nature.com/articles/s41422-019-0164-5.

  31. Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26:152–62. https://doi.org/10.1007/s10495-021-01663-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marshak-Rothstein A. Autoimmunity-promoting and stabilizing innate immunity “UNWUCHT”. Immunol Rev. 2016;269:7–10. http://www.ncbi.nlm.nih.gov/pubmed/26683141.

    Article  PubMed  Google Scholar 

  33. Sarhan M, von Mässenhausen A, Hugo C, Oberbauer R, Linkermann A. Immunological consequences of kidney cell death. Cell Death Dis. 2018;9:114 http://www.nature.com/articles/s41419-017-0057-9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang F, He Y, Zhai Z, Sun E. Programmed cell death pathways in the pathogenesis of systemic lupus erythematosus. J Immunol Res. 2019;2019:1–13. https://www.hindawi.com/journals/jir/2019/3638562/.

    Article  CAS  Google Scholar 

  35. Macchi B, Marino-Merlo F, Nocentini U, Pisani V, Cuzzocrea S, Grelli S, et al. Role of inflammation and apoptosis in multiple sclerosis: Comparative analysis between the periphery and the central nervous system. J Neuroimmunol. 2015;287:80–7. https://linkinghub.elsevier.com/retrieve/pii/S0165572815300357.

    Article  CAS  PubMed  Google Scholar 

  36. Luoqian J, Yang W, Ding X, Tuo Q, Xiang Z, Zheng Z, et al. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol Immunol. 2022. https://www.nature.com/articles/s41423-022-00883-0.

  37. Govindarajan V, de Rivero Vaccari JP, Keane RW. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J Neuroinflamm. 2020;17:260 https://doi.org/10.1186/s12974-020-01944-9.

    Article  CAS  Google Scholar 

  38. Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the role of the NLRP3 inflammasome in multiple sclerosis: pathogenesis, diagnosis, and therapeutics. Front Mol Neurosci. 2022;15. https://doi.org/10.3389/fnmol.2022.894298/full.

  39. Zelic M, Pontarelli F, Woodworth L, Zhu C, Mahan A, Ren Y, et al. RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Rep. 2021;35:109112 https://linkinghub.elsevier.com/retrieve/pii/S2211124721004460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ascherio A, Munger KL. Epidemiology of multiple sclerosis: from risk factors to prevention-an update. Semin Neurol. 2016;36:103–14. http://www.ncbi.nlm.nih.gov/pubmed/27116717.

    Article  PubMed  Google Scholar 

  41. Brenton JN, Goldman MD. A study of dietary modification: Perceptions and attitudes of patients with multiple sclerosis. Mult Scler Relat Disord. 2016;8:54–7. http://linkinghub.elsevier.com/retrieve/pii/S2211034816300529.

    Article  PubMed  Google Scholar 

  42. Alfredsson L, Olsson T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb Perspect Med. 2018;a028944. http://www.ncbi.nlm.nih.gov/pubmed/29735578.

  43. Torii Y, Kawada J, Murata T, Yoshiyama H, Kimura H, Ito Y. Epstein-Barr virus infection-induced inflammasome activation in human monocytes. PLoS ONE. 2017;12:e0175053. https://doi.org/10.1371/journal.pone.0175053.

  44. Sepand MR, Maghsoudi AS, Shadboorestan A, Mirnia K, Aghsami M, Raoufi MX. Cigarette smoke-induced toxicity consequences of intracellular iron dysregulation and ferroptosis. Life Sci. 2021;281:119799 https://linkinghub.elsevier.com/retrieve/pii/S0024320521007852.

    Article  CAS  PubMed  Google Scholar 

  45. Pouwels SD, Zijlstra GJ, van der Toorn M, Hesse L, Gras R, ten Hacken NHT, et al. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. Am J Physiol Cell Mol Physiol. 2016;310::L377–86. https://doi.org/10.1152/ajplung.00174.2015.

    Article  Google Scholar 

  46. Bokaba RP, Anderson R, Theron AJ, Tintinger GR. Cigarette smoke condensate attenuates phorbol ester-mediated neutrophil extracellular trap formation. Afr Health Sci. 2017;17:896 http://www.ncbi.nlm.nih.gov/pubmed/29085418.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang M-L, Doyle HA, Clarke SG, Herold KC, Mamula MJ. Oxidative modifications in tissue pathology and autoimmune disease. Antioxid Redox Signal. 2017;ars.2017.7382. http://www.ncbi.nlm.nih.gov/pubmed/29088923

  48. Harberts E, Fishelevich R, Liu J, Atamas SP, Gaspari AA. MyD88 mediates the decision to die by apoptosis or necroptosis after UV irradiation. Innate Immun. 2014;20:529–39. https://doi.org/10.1177/1753425913501706.

    Article  CAS  PubMed  Google Scholar 

  49. de Jager TL, Cockrell AE, Du Plessis SS. Ultraviolet light induced generation of reactive oxygen species. Adv Exp Med Biol. 2017:15–23. http://www.ncbi.nlm.nih.gov/pubmed/29124687.

  50. Orzalli MH, Kagan JC. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 2017;27:800–9. http://www.ncbi.nlm.nih.gov/pubmed/28642032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17:151–64. http://www.ncbi.nlm.nih.gov/pubmed/28138137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265:130–42. https://doi.org/10.1111/imr.12287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Qin Y, Wang T, Chen Y, Lang X, Zheng J, et al. Pyroptosis induced by enterovirus 71 and coxsackievirus B3 infection affects viral replication and host response. Sci Rep. 2018;8:2887 http://www.ncbi.nlm.nih.gov/pubmed/29440739.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schönrich G, Raftery MJ. Neutrophil extracellular traps go viral. Front Immunol. 2016;7:366 http://www.ncbi.nlm.nih.gov/pubmed/27698656.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lugrin J, Martinon F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev. 2018;281:99–114. https://doi.org/10.1111/imr.12618.

    Article  CAS  PubMed  Google Scholar 

  56. You R, He X, Zeng Z, Zhan Y, Xiao Y, Xiao R. Pyroptosis and its role in autoimmune disease: a potential therapeutic target. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.841732/full.

  57. Tobore TO. Oxidative/nitroxidative stress and multiple sclerosis. J Mol Neurosci. 2021;71:506–14. https://doi.org/10.1007/s12031-020-01672-y.

    Article  CAS  PubMed  Google Scholar 

  58. Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8. https://doi.org/10.3389/fcell.2020.586578/full.

  59. Lai B, Wu C-H, Wu C-Y, Luo S-F, Lai J-H. Ferroptosis and autoimmune diseases. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.916664/full.

  60. Faux SP, Tai T, Thorne D, Xu Y, Breheny D, Gaca M. The role of oxidative stress in the biological responses of lung epithelial cells to cigarette smoke. Biomark. 2009;14:90–6. http://www.ncbi.nlm.nih.gov/pubmed/19604067.

    Article  CAS  Google Scholar 

  61. Hussain MS, Tripathi V. Smoking under hypoxic conditions: a potent environmental risk factor for inflammatory and autoimmune diseases. Mil Med Res. 2018;5:11 https://doi.org/10.1186/s40779-018-0158-5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Milani C, Farina F, Botto L, Massimino L, Lonati E, Donzelli E, et al. Systemic exposure to air pollution induces oxidative stress and inflammation in mouse brain, contributing to neurodegeneration onset. Int J Mol Sci. 2020;21:3699 https://www.mdpi.com/1422-0067/21/10/3699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kgatle MM, Spearman CW, Kalla AA, Hairwadzi HN. DNA oncogenic virus-induced oxidative stress, genomic damage, and aberrant epigenetic alterations. Oxid Med Cell Longev. 2017;2017:1–16. https://www.hindawi.com/journals/omcl/2017/3179421/.

    Article  Google Scholar 

  64. Wimalawansa SJ. Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology. 2019;8:30 https://www.mdpi.com/2079-7737/8/2/30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kilic E, Özer ÖF, Erek Toprak A, Erman H, Torun E, Kesgin Ayhan S, et al. Oxidative stress status in childhood obesity: a potential risk predictor. Med Sci Monit. 2016;22:3673–9. http://www.medscimonit.com/abstract/index/idArt/897965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shah SA, Yoon GH, Kim MO. Protection of the developing brain with anthocyanins against ethanol-induced oxidative stress and neurodegeneration. Mol Neurobiol. 2015;51:1278–91. https://doi.org/10.1007/s12035-014-8805-7.

    Article  CAS  PubMed  Google Scholar 

  67. Tanaka M, Vécsei L. Monitoring the redox status in multiple sclerosis. Biomedicines. 2020;8:406 https://www.mdpi.com/2227-9059/8/10/406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roth AD, Núñez MT. Oligodendrocytes: functioning in a delicate balance between high metabolic requirements and oxidative damage. Adv Exp Med Biol. 2016:167–81. https://doi.org/10.1007/978-3-319-40764-7_8.

  69. Arneth B. Multiple sclerosis and smoking. Am J Med. 2020;133:783–8. https://linkinghub.elsevier.com/retrieve/pii/S000293432030228X.

    Article  PubMed  Google Scholar 

  70. Abbaszadeh S, Tabary M, Aryannejad A, Abolhasani R, Araghi F, Khaheshi I, et al. Air pollution and multiple sclerosis: a comprehensive review. Neurol Sci. 2021;42:4063–72. https://doi.org/10.1007/s10072-021-05508-4.

    Article  PubMed  Google Scholar 

  71. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022;375:296–301. https://doi.org/10.1126/science.abj8222.

    Article  CAS  PubMed  Google Scholar 

  72. Ben Fredj N, Rotola A, Nefzi F, Chebel S, Rizzo R, Caselli E, et al. Identification of human herpesviruses 1 to 8 in Tunisian multiple sclerosis patients and healthy blood donors. J Neurovirol. 2012;18:12–9. https://doi.org/10.1007/s13365-011-0056-z.

    Article  CAS  PubMed  Google Scholar 

  73. Chang B, Guan H, Wang X, Chen Z, Zhu W, Wei X, et al. Cox4i2 triggers an increase in reactive oxygen species, leading to ferroptosis and apoptosis in HHV7 infected schwann cells. Front Mol Biosci. 2021;8. https://doi.org/10.3389/fmolb.2021.660072/full.

  74. Zhang D, Li Y, Du C, Sang L, Liu L, Li Y, et al. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med. 2022;20:363 https://doi.org/10.1186/s12967-022-03566-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sampilvanjil A, Karasawa T, Yamada N, Komada T, Higashi T, Baatarjav C, et al. Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells. Am J Physiol Circ Physiol 2020;318:H508–18. https://doi.org/10.1152/ajpheart.00559.2019.

    Article  CAS  Google Scholar 

  76. Azzouz D, Khan MA, Sweezey N, Palaniyar N. Two-in-one: UV radiation simultaneously induces apoptosis and NETosis. Cell Death Discov. 2018;4:51 https://www.nature.com/articles/s41420-018-0048-3.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, et al. Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal. 2021;19:120 https://doi.org/10.1186/s12964-021-00799-8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoël I, Stys PK, et al. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J Neurosci. 2020;40:9327–41. https://doi.org/10.1523/JNEUROSCI.1749-20.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev. 2018;98:727–80. https://doi.org/10.1152/physrev.00041.2016.

    Article  CAS  PubMed  Google Scholar 

  80. Mao H, Zhao Y, Li H, Lei L. Ferroptosis as an emerging target in inflammatory diseases. Prog Biophys Mol Biol. 2020;155:20–8. https://linkinghub.elsevier.com/retrieve/pii/S0079610720300250.

    Article  CAS  PubMed  Google Scholar 

  81. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25. http://www.nature.com/articles/s41422-020-00441-1.

    Article  CAS  PubMed  Google Scholar 

  82. Hu C, Nydes M, Shanley KL, Morales Pantoja IE, Howard TA, Bizzozero OA. Reduced expression of the ferroptosis inhibitor glutathione peroxidase‐4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurochem. 2019;148:426–39. https://doi.org/10.1111/jnc.14604.

    Article  CAS  PubMed  Google Scholar 

  83. McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci USA. 2018;201722041. http://www.ncbi.nlm.nih.gov/pubmed/29895691.

  84. Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci. 2010;30:15811–20. https://doi.org/10.1523/JNEUROSCI.4088-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McKenzie BA, Fernandes JP, Doan MAL, Schmitt LM, Branton WG, Power C. Activation of the executioner caspases-3 and -7 promotes microglial pyroptosis in models of multiple sclerosis. J Neuroinflamm. 2020;17:253 https://doi.org/10.1186/s12974-020-01902-5. Available from

    Article  CAS  Google Scholar 

  86. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:128 http://www.nature.com/articles/s41419-019-1413-8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Christgen S, Place DE, Kanneganti T-D. Toward targeting inflammasomes: insights into their regulation and activation. Cell Res. 2020;30:315–27. http://www.nature.com/articles/s41422-020-0295-8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wang B, Bhattacharya M, Roy S, Tian Y, Yin Q. Immunobiology and structural biology of AIM2 inflammasome. Mol Aspects Med. 2020;100869. https://linkinghub.elsevier.com/retrieve/pii/S0098299720300510

  89. Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci [Internet]. 2019;20:19–33. http://www.nature.com/articles/s41583-018-0093-1.

    Article  CAS  PubMed  Google Scholar 

  90. Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, et al. Activation of Necroptosis in Multiple Sclerosis. Cell Rep. 2015;10:1836–49. https://linkinghub.elsevier.com/retrieve/pii/S2211124715002090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Picon C, Jayaraman A, James R, Beck C, Gallego P, Witte ME, et al. Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathol. 2021;141:585–604. https://doi.org/10.1007/s00401-021-02274-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15:545–58. http://www.nature.com/articles/nri3871.

    Article  CAS  PubMed  Google Scholar 

  93. Hou L, Yuki KX. CCR6 and CXCR6 identify the Th17 cells with cytotoxicity in experimental autoimmune encephalomyelitis. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.819224/full.

  94. Malmestrom C, Lycke J, Haghighi S, Andersen O, Carlsson L, Wadenvik H, et al. Relapses in multiple sclerosis are associated with increased CD8+ T-cell mediated cytotoxicity in CSF. J Neuroimmunol. 2008;196:159–65. https://linkinghub.elsevier.com/retrieve/pii/S0165572808000593.

    Article  PubMed  Google Scholar 

  95. Boldrini VO, Marques AM, Quintiliano RPS, Moraes AS, Stella CRAV, Longhini ALF, et al. Cytotoxic B cells in relapsing-remitting multiple sclerosis patients. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.750660/full.

  96. Stojić-Vukanić Z, Hadžibegović S, Nicole O, Nacka-Aleksić M, Leštarević S, Leposavić G. CD8+ T cell-mediated mechanisms contribute to the progression of neurocognitive impairment in both multiple sclerosis and Alzheimer’s disease? Front Immunol. 2020;11. https://doi.org/10.3389/fimmu.2020.566225/full.

  97. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13:110 https://doi.org/10.1186/s13045-020-00946-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miguel D, Ramirez‐Labrada A, Uranga I, Hidalgo S, Santiago L, Galvez EM, et al. Inflammatory cell death induced by cytotoxic lymphocytes: a dangerous but necessary liaison. FEBS J. 2021;16093. https://doi.org/10.1111/febs.16093.

  99. Kamiya M, Mizoguchi F, Kawahata K, Wang D, Nishibori M, Day J, et al. Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies. Nat Commun. 2022;13:166 https://www.nature.com/articles/s41467-021-27875-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liang J, Shen Y, Wang Y, Huang Y, Wang J, Zhu Q, et al. Ferroptosis participates in neuron damage in experimental cerebral malaria and is partially induced by activated CD8+ T cells. Mol Brain. 2022;15:57 https://doi.org/10.1186/s13041-022-00942-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cardoso TM, Lima JB, Bonyek-Silva Í, Nunes S, Feijó D, Almeida H, et al. Inflammasome activation by CD8+ T cells from patients with cutaneous leishmaniasis caused by Leishmania braziliensis in the immunopathogenesis of the disease. J Invest Dermatol. 2021;141:209–213.e2. https://linkinghub.elsevier.com/retrieve/pii/S0022202X2031678X.

    Article  CAS  PubMed  Google Scholar 

  102. Onyango IG, Jauregui GV, Čarná M, Bennett JP, Stokin GB. Neuroinflammation in Alzheimer’s disease. Biomedicines. 2021;9:524 https://www.mdpi.com/2227-9059/9/5/524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lin M, Liu N, Qin Z, Wang Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol Sin. 2022. https://www.nature.com/articles/s41401-022-00879-6.

  104. Mansilla MJ, Comabella M, Río J, Castilló J, Castillo M, Martin R, et al. Up-regulation of inducible heat shock protein-70 expression in multiple sclerosis patients. Autoimmunity. 2014;47:127–33. https://doi.org/10.3109/08916934.2013.866104.

    Article  CAS  PubMed  Google Scholar 

  105. Shi J, Xiao Y, Zhang N, Jiao M, Tang X, Dai C, et al. HMGB1 from astrocytes promotes EAE by influencing the immune cell infiltration-associated functions of BMECs in mice. Neurosci Bull. 2022;38:1303–14. https://doi.org/10.1007/s12264-022-00890-1.

    Article  CAS  PubMed  Google Scholar 

  106. Wu M, Xu L, Wang Y, Zhou N, Zhen F, Zhang Y, et al. S100A8/A9 induces microglia activation and promotes the apoptosis of oligodendrocyte precursor cells by activating the NF-κB signaling pathway. Brain Res Bull. 2018;143:234–45. https://linkinghub.elsevier.com/retrieve/pii/S0361923018304131.

    Article  CAS  PubMed  Google Scholar 

  107. Lutz SE, González-Fernández E, Ventura JCC, Pérez-Samartín A, Tarassishin L, Negoro H, et al. Contribution of Pannexin1 to experimental autoimmune encephalomyelitis. PLoS ONE. 2013;8:e66657. https://doi.org/10.1371/journal.pone.0066657.

  108. Yokote H, Toru S, Nishida Y, Hattori T, Sanjo N, Yokota T. Serum amyloid A level correlates with T2 lesion volume and cortical volume in patients with multiple sclerosis. J Neuroimmunol. 2021;351:577466 https://linkinghub.elsevier.com/retrieve/pii/S016557282030727X.

    Article  CAS  PubMed  Google Scholar 

  109. Mohan H, Krumbholz M, Sharma R, Eisele S, Junker A, Sixt M, et al. Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan and decorin are upregulated and associated with infiltrating immune cells. Brain Pathol. 2010;20:no-no. https://doi.org/10.1111/j.1750-3639.2010.00399.x.

  110. Chang A, Staugaitis SM, Dutta R, Batt CE, Easley KE, Chomyk AM, et al. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann Neurol. 2012;72:918–26. https://doi.org/10.1002/ana.23693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. ElAli A, Rivest S. Microglia ontology and signaling. Front cell Dev Biol. 2016;4:72 http://www.ncbi.nlm.nih.gov/pubmed/27446922.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Garaschuk O, Verkhratsky A. Physiology of microglia. Methods Mol Biol. 2019:27–40. https://doi.org/10.1007/978-1-4939-9658-2_3.

  113. Caravagna C, Jaouën A, Desplat-Jégo S, Fenrich KK, Bergot E, Luche H, et al. Diversity of innate immune cell subsets across spatial and temporal scales in an EAE mouse model. Sci Rep. 2018;8:5146 http://www.ncbi.nlm.nih.gov/pubmed/29572472.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16. http://www.ncbi.nlm.nih.gov/pubmed/25017883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hernández-Pedro N, Magana-Maldonado R, Ramiro AS, Pérez-De la Cruz V, Rangel-López E, Sotelo J, et al. PAMP-DAMPs interactions mediates development and progression of multiple sclerosis. Front Biosci (Sch Ed). 2016;8:13–28. http://www.ncbi.nlm.nih.gov/pubmed/26709893.

    Article  Google Scholar 

  116. Fernández-Paredes L, de Diego RP, de Andrés C, Sánchez-Ramón S. Close encounters of the first kind: innate sensors and multiple sclerosis. Mol Neurobiol. 2016. http://www.ncbi.nlm.nih.gov/pubmed/26732593

  117. Fallarino F, Gargaro M, Mondanell G, Downer EJ, Hossain MJ, Gran B. Delineating the role of toll-like Receptors in the Neuro-inflammation Model EAE. Methods Mol Biol. 2016;1390:383–411. http://www.ncbi.nlm.nih.gov/pubmed/26803641.

    Article  CAS  PubMed  Google Scholar 

  118. Deerhake ME, Biswas DD, Barclay WE, Shinohara ML. Pattern recognition receptors in multiple sclerosis and its animal models. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.02644/full

  119. Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol [Internet]. 2019;332:16–30. https://linkinghub.elsevier.com/retrieve/pii/S016557281930058X.

    Article  CAS  PubMed  Google Scholar 

  120. Olcum M, Tastan B, Kiser C, Genc S, Genc K. Microglial NLRP3 inflammasome activation in multiple sclerosis. Adv Protein Chem Struct Biol. 2020:247–308. https://linkinghub.elsevier.com/retrieve/pii/S1876162319300616

  121. Inoue M, Williams KL, Gunn MD, Shinohara ML. NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2012;109:10480–5. https://doi.org/10.1073/pnas.1201836109.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Paré A, Mailhot B, Lévesque SA, Lacroix S. Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: breaking the vicious cycle between IL-1β and GM-CSF. Brain Behav Immun. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27432634

  123. Barclay W, Shinohara ML. Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Brain Pathol. 2017;27:213–9. https://doi.org/10.1111/bpa.12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Palle P, Monaghan KL, Milne SM, Wan ECK. Cytokine signaling in multiple sclerosis and its therapeutic applications. Med Sci. 2017;5:23 http://www.ncbi.nlm.nih.gov/pubmed/29099039.

    Google Scholar 

  125. Legroux L, Arbour N. Multiple sclerosis and T lymphocytes: an entangled story. J Neuroimmune Pharmacol. 2015;10:528–46. https://doi.org/10.1007/s11481-015-9614-0.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Giles DA, Duncker PC, Wilkinson NM, Washnock-Schmid JM, Segal BM. CNS-resident classical DCs play a critical role in CNS autoimmune disease. J Clin Invest. 2018;128:5322–34. https://www.jci.org/articles/view/123708.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Parker Harp CR, Archambault AS, Sim J, Shlomchik MJ, Russell JH, Wu GF B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis. Weber MS, editor. PLoS ONE. 2018;13:e0199694. https://doi.org/10.1371/journal.pone.0199694.

  128. Brandão WN, De Oliveira MG, Andreoni RT, Nakaya H, Farias AS, Peron JPS. Neuroinflammation at single cell level: what is new? J Leukoc Biol. 2020;108:1129–37. https://doi.org/10.1002/JLB.3MR0620-035R.

    Article  CAS  PubMed  Google Scholar 

  129. Langenhorst D, Haack S, Göb S, Uri A, Lühder F, Vanhove B, et al. CD28 costimulation of T Helper 1 cells enhances cytokine release in vivo. Front Immunol. 2018;9:1060 https://doi.org/10.3389/fimmu.2018.01060/full.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wu GF, Shindler KS, Allenspach EJ, Stephen TL, Thomas HL, Mikesell RJ, et al. Limited sufficiency of antigen presentation by dendritic cells in models of central nervous system autoimmunity. J Autoimmun. 2011;36:56–64. http://linkinghub.elsevier.com/retrieve/pii/S0896841110001381.

    Article  CAS  PubMed  Google Scholar 

  131. Xie Z-X, Zhang H-L, Wu X-J, Zhu J, Ma D-H, Jin T. Role of the Immunogenic and Tolerogenic Subsets of Dendritic Cells in Multiple Sclerosis. Mediators Inflamm. 2015;2015:1–20. http://www.hindawi.com/journals/mi/2015/513295/.

    Article  CAS  Google Scholar 

  132. De Laere M, Berneman ZN, Cools N. To the brain and back: migratory paths of dendritic cells in multiple sclerosis. J Neuropathol Exp Neurol. 2018;77:178–92. http://www.ncbi.nlm.nih.gov/pubmed/29342287.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Piacente F, Bottero M, Benzi A, Vigo T, Uccelli A, Bruzzone S, et al. Neuroprotective potential of dendritic cells and sirtuins in multiple sclerosis. Int J Mol Sci. 2022;23:4352 https://www.mdpi.com/1422-0067/23/8/4352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mohammad MG, Tsai VWW, Ruitenberg MJ, Hassanpour M, Li H, Hart PH, et al. Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Invest. 2014;124:1228–41. http://www.jci.org/articles/view/71544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hochmeister S, Zeitelhofer M, Bauer J, Nicolussi E-M, Fischer M-T, Heinke B, et al. After injection into the striatum, in vitro-differentiated microglia- and bone marrow-derived dendritic cells can leave the central nervous system via the blood stream. Am J Pathol. 2008;173:1669–81. https://linkinghub.elsevier.com/retrieve/pii/S0002944010615520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Clarkson BD, Walker A, Harris M, Rayasam A, Sandor M, Fabry Z. Mapping the accumulation of co-infiltrating CNS dendritic cells and encephalitogenic T cells during EAE. J Neuroimmunol. 2014;277:39–49. http://linkinghub.elsevier.com/retrieve/pii/S0165572814008935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mellanby RJ, Cambrook H, Turner DG, O’Connor RA, Leech MD, Kurschus FC, et al. TLR-4 ligation of dendritic cells is sufficient to drive pathogenic T cell function in experimental autoimmune encephalomyelitis. J Neuroinflamm. 2012;9:248 https://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-9-248.

    Article  CAS  Google Scholar 

  138. Keller CW, Sina C, Kotur MB, Ramelli G, Mundt S, Quast I, et al. ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4+ T cell pathogenicity during CNS inflammation. Proc Natl Acad Sci USA. 2017;114:E11228–37. https://doi.org/10.1073/pnas.1713664114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Keller CW, Lünemann JD. Noncanonical autophagy in dendritic cells triggers CNS autoimmunity. Autophagy. 2018;14:560–1. http://www.ncbi.nlm.nih.gov/pubmed/29368985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain. 2017;140:1900–13. https://academic.oup.com/brain/article/140/7/1900/3852560.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Denic A, Wootla B, Rodriguez M. CD8 + T cells in multiple sclerosis. Expert Opin Ther Targets. 2013;17:1053–66. https://doi.org/10.1517/14728222.2013.815726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cavallo S. Immune-mediated genesis of multiple sclerosis. J Transl Autoimmun [Internet] 2020;3:100039 https://linkinghub.elsevier.com/retrieve/pii/S258990902030006X.

    Article  PubMed  Google Scholar 

  143. Oudejans E, Luchicchi A, Strijbis EMM, Geurts JJG, van Dam A-M. Is MS affecting the CNS only? Neurol Neuroimmunol Neuroinflamm. 2021;8:e914 https://doi.org/10.1212/NXI.0000000000000914.

    Article  PubMed  Google Scholar 

  144. Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernán MA, Olek MJ, et al. Epstein-Barr virus antibodies and risk of multiple sclerosis. JAMA. 2001;286:3083 https://doi.org/10.1001/jama.286.24.3083.

    Article  CAS  PubMed  Google Scholar 

  145. Yin L, Dai S, Clayton G, Gao W, Wang Y, Kappler J, et al. Recognition of self and altered self by T cells in autoimmunity and allergy. Protein Cell. 2013;4:8–16. https://doi.org/10.1007/s13238-012-2077-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ransohoff RM. Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. J Neuroimmunol. 1999;98:57–68. https://linkinghub.elsevier.com/retrieve/pii/S016557289900082X.

    Article  CAS  PubMed  Google Scholar 

  147. Martin-Blondel G, Pignolet B, Tietz S, Yshii L, Gebauer C, Perinat T, et al. Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1-integrin. Eur J Immunol. 2015;45:3302–12. https://doi.org/10.1002/eji.201545632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nishihara H, Soldati S, Mossu A, Rosito M, Rudolph H, Muller WA, et al. Human CD4+ T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS. 2020;17:3 https://doi.org/10.1186/s12987-019-0165-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jain RW, Yong VW. B cells in central nervous system disease: diversity, locations and pathophysiology. Nat Rev Immunol. 2022;22:513–24. https://www.nature.com/articles/s41577-021-00652-6.

    Article  CAS  PubMed  Google Scholar 

  150. Absinta M, Lassmann H, Trapp BD. Mechanisms underlying progression in multiple sclerosis. Curr Opin Neurol. 2020;33:277–85. https://journals.lww.com/10.1097/WCO.0000000000000818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Andersson M, Yu M, Soderstrom M, Weerth S, Baig S, Linington C, et al. Multiple MAG peptides are recognized by circulating T and B lymphocytes in polyneuropathy and multiple sclerosis. Eur J Neurol. 2002;9:243–51. https://doi.org/10.1046/j.1468-1331.2002.00391.x.

    Article  CAS  PubMed  Google Scholar 

  152. Bruno R, Sabater L, Sospedra M, Ferrer-Francesch X, Escudero D, Martínez-Cáceres E, et al. Multiple sclerosis candidate autoantigens except myelin oligodendrocyte glycoprotein are transcribed in human thymus. Eur J Immunol. 2002;32:2737–47. http://doi.wiley.com/10.1002/1521-4141%282002010%2932%3A10%3C2737%3A%3AAID-IMMU2737%3E3.0.CO%3B2-0.

    Article  CAS  PubMed  Google Scholar 

  153. Riedhammer C, Weissert R. Antigen presentation, autoantigens, and immune regulation in multiple sclerosis and other autoimmune diseases. Front Immunol. 2015;6:322 http://www.ncbi.nlm.nih.gov/pubmed/26136751.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem. 2007;100:070214184024009-??? https://doi.org/10.1111/j.1471-4159.2006.04319.x.

  155. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KHG. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162:1–11. https://academic.oup.com/cei/article/162/1/1/6482615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Høglund RA, Maghazachi AA. Multiple sclerosis and the role of immune cells. World J Exp Med. 2014;4:27–37. http://www.wjgnet.com/2220-315X/full/v4/i3/27.htm.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Dargahi N, Katsara M, Tselios T, Androutsou M-E, de Courten M, Matsoukas J, et al. Multiple sclerosis: immunopathology and treatment update. Brain Sci. 2017;7:78 http://www.mdpi.com/2076-3425/7/7/78.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Sinha S, Itani FR, Karandikar NJ. Immune regulation of multiple sclerosis by CD8+ T cells. Immunol Ress. 2014;59:254–65. http://www.ncbi.nlm.nih.gov/pubmed/24845461.

    Article  CAS  Google Scholar 

  159. van Nierop GP, van Luijn MM, Michels SS, Melief M-J, Janssen M, Langerak AW, et al. Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathol [Internet]. 2017;134:383–401. http://www.ncbi.nlm.nih.gov/pubmed/28624961.

    Article  PubMed  Google Scholar 

  160. Fabriek BO, Zwemmer JNP, Teunissen CE, Dijkstra CD, Polman CH, Laman JD, et al. In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultrasound-guided fine-needle aspiration cytology. J Neuroimmunol. 2005;161:190–4. http://linkinghub.elsevier.com/retrieve/pii/S0165572805000020.

    Article  CAS  PubMed  Google Scholar 

  161. Weller RO, Galea I, Carare RO, Minagar A. Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiol J Int Soc Pathophysiol. 2010;17:295–306. http://linkinghub.elsevier.com/retrieve/pii/S0928468009001175.

    CAS  Google Scholar 

  162. Fransen NL, Hsiao C-C, van der Poel M, Engelenburg HJ, Verdaasdonk K, Vincenten MCJ, et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain. 2020;143:1714–30. https://academic.oup.com/brain/article/143/6/1714/5836675.

    Article  PubMed  Google Scholar 

  163. Veroni C, Aloisi F. The CD8 T cell-Epstein-Barr virus-B cell trialogue: a central issue in multiple sclerosis pathogenesis. Front Immunol. 2021;12. https://doi.org/10.3389/fimmu.2021.665718/full.

  164. Rodríguez Murúa S, Farez MF, Quintana FJ. The immune response in multiple sclerosis. Annu Rev Pathol Mech Dis. 2022;17:121–39. https://doi.org/10.1146/annurev-pathol-052920-040318.

    Article  CAS  Google Scholar 

  165. Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ, Tan MP, et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J Biol Chem. 2012;287:1168–77. https://linkinghub.elsevier.com/retrieve/pii/S002192582053353X.

    Article  CAS  PubMed  Google Scholar 

  166. Golstein P, Griffiths GM. An early history of T cell-mediated cytotoxicity. Nat Rev Immunol [Internet] Nat Rev Immunol. 2018;18:527–35. http://www.nature.com/articles/s41577-018-0009-3.

    Article  CAS  PubMed  Google Scholar 

  167. Gálvez J, Gálvez JJ, García-Peñarrubia P. Is TCR/pMHC affinity a good estimate of the T-cell response? An answer based on predictions from 12 phenotypic models. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.00349/full.

  168. Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124:359–67. https://www.nature.com/articles/s41416-020-01048-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WGL wrote the paper alone.

Corresponding author

Correspondence to Walter Gottlieb Land.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Land, W.G. Role of DAMPs and cell death in autoimmune diseases: the example of multiple sclerosis. Genes Immun 24, 57–70 (2023). https://doi.org/10.1038/s41435-023-00198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-023-00198-8

Search

Quick links