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The molecular processes underlying human health and disease are highly complex. Often, genetic and environmental factors
contribute to a given disease or phenotype in a non-additive manner, yielding a gene–environment (G × E) interaction. In this work,
we broadly review current knowledge on the impact of gene–environment interactions on human health. We first explain the
independent impact of genetic variation and the environment. We next detail well-established G × E interactions that impact
human health involving environmental toxicants, pollution, viruses, and sex chromosome composition. We conclude with
possibilities and challenges for studying G × E interactions.
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INTRODUCTION
For centuries, clinicians and scientists have sought to understand
the etiology of disease. While some diseases can be traced back to
a single factor, the etiology of complex diseases is more difficult to
discern, in part due to the combinatorial nature of various
contributing factors. One such factor contributing to disease risk is
an individual’s genetics, with some individuals inheriting specific
genetic variants that either (1) directly trigger disease pathogen-
esis or (2) work in concert with other factors and/or other genetic
variants to increase disease risk. In many cases, Environmental
exposures, defined here as pathogens, chemicals, and additional
external factors, have also been shown to contribute to disease.
While epidemiological studies can identify associative relation-
ships between exposure to environmental factors and disease
pathogenesis, not all individuals who are exposed to a specific
environmental factor develop disease. Likewise, not all individuals
who inherit particular genetic variants develop disease. For the
vast majority of diseases, it is apparent that combinations of
synergistic or antagonistic factors are important to disease risk.
Such “Gene by Environment” (G × E) interactions are the focus of
this review.
Prior reviews have described G × E interactions in nonhuman

organisms such as yeasts [1], or in specific human disease
contexts, such as inflammatory diseases or particular psychologi-
cal conditions [2–7]. Others have focused on models of GxE
interactions, such as Ottman [8] and Kauffman and Demenais [9]
who collectively proposed four models for G × E interactions: (1)
the risk genotype exacerbates the effect of the environmental risk
factor; (2) exposure to the environmental risk factor exacerbates
the effect of the risk genotype; (3) both the environmental risk
factor and risk genotype are required to increase disease risk, and

(4) the environmental risk factor and the genotype each have
some effect on disease risk, and risk is higher when they occur
together than when they occur alone. This review focuses on the
latter model, where a synergistic relationship between environ-
mental risk factors and genetic factors increases disease risk (Fig.
1). Herein, we broadly review G × E in the context of human health
with a focus on how particular genetic and environmental factors
synergistically increase disease risk. We first describe instances
where genetic and environmental risk factors can independently
potentiate disease. We then examine how these two factors can
work together to increase disease risk.

Genetic etiology of disease
In many cases, genetic variants impact phenotypes that contribute
to disease pathology. Historically, family studies have been used
to measure the contribution of genetics to a particular trait
through studies comparing disease risk in monozygotic twins
(100% shared genetic identity), dizygotic twins (50% shared
genetic identity), and siblings (also 50% shared genetic identity)
[10]. Significant differences between monozygotic and dizygotic
disease concordance establish strong genetic heritability. For
example, three independent twin studies have identified a
monozygotic twin concordance for Crohn’s disease of ~50%
compared to ~3–4% disease concordance in dizygotic twins
[11–13]. The difference in concordance of monozygotic and
dizygotic twins also highlights the possible role of epistatic risk
factors that require interactions between multiple genetic variants
to increase disease risk [14]. The over ten-fold increase in Crohn’s
disease concordance in siblings with identical DNA sequence
compared to siblings sharing 50% genetic identity indicates a
large genetic component to disease risk.
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Diseases with a genetic component can be monogenic (i.e.,
caused by a single rare mutation), complex (i.e., caused by the
cumulative effect of multiple genetic events and/or the environ-
ment), or both. For example, cystic fibrosis is a monogenic
condition caused by a mutation in the CFTR gene [15, 16], with
additional genetic variants impacting disease presentation and
severity [17]. However, many “causal” disease mutations are
incompletely penetrant, with some individuals carrying the
mutation expressing various degrees of symptoms and some
individuals not expressing the disease at all [18]. For example, only
10–30% of people with damaging mutations in the gene encoding
complement component 2 (C2) develop systemic lupus erythe-
matosus (lupus) [19]. Instead, most disease manifestations are the
result of complex etiologies, with many relatively common genetic
polymorphisms (i.e., allele frequencies greater than 1%) contribut-
ing to disease risk in an additive manner [20]. Indeed, most
patients with lupus do not have monogenetic disease [21], with
the most common form of monogenic lupus (mutations in the
TREX1 gene) contributing to only 0.5 to 2% of adult lupus cases
[22].

Identifying genetic risk loci. Genome-wide association studies
(GWAS) have emerged as the predominant tool for the systematic,
genome-wide identification of disease-associated genetic risk
variants. Such studies genotype thousands of cases and controls
to identify statistically significant genetic associations between
particular variants and a given disease phenotype [23]. The most
recently published GWAS “catalog” contains over 5000 indepen-
dent GWAS datasets that describe more than 70,000 variant-trait
associations [24]. While such studies are helpful for identifying
disease risk loci for further functional analysis, they have short-
comings. First, study participant environments are not standar-
dized, and thus, potential environmental effects are not well
controlled. Second, only a small fraction of the variants identified
in a given GWAS are causal, due to linkage disequilibrium;
specifically, the particular variant(s) directly studied (“tagged”) in
the GWAS may simply be in strong linkage disequilibrium with the
variant that is functionally influencing the phenotype [25]. Finally,
GWAS to date have focused disproportionately (>78%) on
individuals of European descent [26]. Additional studies focused
on nonwhite populations are thus needed to obtain a clearer
picture of the disease spectrum across ancestries [27, 28]. Despite
these limitations, the increasing availability of GWAS data has
enabled researchers to pursue novel hypotheses and design
targeted studies to further investigate functional roles between a
particular variant and its associated phenotype.

Functional interpretation of genetic risk loci. While GWAS have
identified many genetic risk loci, additional studies are required to
elucidate the causative molecular mechanisms underlying disease.
Genetic variants identified in GWAS can increase disease risk

through multiple means, including changing the amino acid of a
protein, altering gene regulatory mechanisms, impacting RNA
splicing, and affecting translation rates. For example, the
identification of loss-of-function nonsynonymous coding genetic
variants within the filaggrin (FLG) gene in ~10% of atopic
dermatitis patients [29] led to further studies revealing the role
of FLG in the development of a healthy epidermis [30, 31] and
atopic dermatitis pathogenesis [32]. In particular, studies in cells
from patients with FLG mutations and in mice lacking a functional
FLG helped shape the current hypothesis that defects in the skin
barrier lead to allergic sensitization and the progression of atopic
dermatis in infancy toward asthma and allergic disease in later
childhood, commonly known as the atopic march [33]. More
recent studies have focused on the role of FLGmutation-mediated
skin barrier defects in skin dysbiosis and Staphylococcus coloniza-
tion [34–36], illustrating how genetic studies can lead to
previously unexplored avenues and, ultimately, targeted studies
to ascribe functional contributions of variants to disease
processes.
Mutations at the FLG locus demonstrate how a change in the

genetic code can contribute to disease processes by altering the
amino acid sequence of a protein, which may affect its structure
and/or function as a consequence. However, it should be noted
that variants do not need to occur in coding regions to elicit a
phenotype. In addition to coding mutations, variants in noncoding
regions also make substantial contributions to disease risk by
altering gene regulatory mechanisms. Indeed, GWAS variants for
many diseases are highly enriched within noncoding genomic
regions [37]. Such variants likely alter gene regulatory mechan-
isms, leading to genotype-dependent variability in gene expres-
sion levels that contribute to disease risk [37, 38], often by altering
transcriptional elements (e.g., promoters or distal regulatory
elements such as enhancers) or posttranscriptional elements
(e.g., regions controlling mRNA splicing or mRNA localization) [39].
One important way in which noncoding variants affect regulatory
element function is through the alteration of transcription factor
(TF) DNA binding interactions. Both amino acid-altering variants
located within the TF proteins themselves and noncoding variants
located within TF genomic binding sites can alter TF-DNA binding
specificity or affinity [40–42]. For example, an obesity-associated
intronic genetic variant in the FTO locus leads to genotype-
dependent binding of the ARID5B TF, resulting in a doubling of
the expression of the IRX3 and IRX5 genes, a genotype-dependent
increase in energy-storing adipocytes, and a decrease in energy-
dissipating adipocytes [43]. In addition to genetic variants that
alter TF-based transcriptional regulatory mechanisms, genetic
variants can also alter posttranscriptional regulatory mechanisms
by affecting the binding of RNA binding proteins [44], microRNAs
[45–47], or long noncoding RNAs [48].
Modern computational and statistical methods have enabled

the robust assessment of genotype-dependent biology. Recently,

Fig. 1 Gene × environment (G × E) interactions involve synergy between environmental risk factors and genetic variants. Some G × E
interactions can increase the risk of disease. A model of G × E interaction originally defined in Ottman [8] and further refined in Kauffmann and
Demenais [9] is depicted where the genetic risk variants and one or more environmental risk factor synergistically affect disease risk.
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quantitative trait locus (QTL) and allelic imbalance analyses have
emerged as powerful tools for identifying genetic variants with
genotype-dependent biological effects [49]. QTL studies identify
genotype-dependent biology by quantitatively comparing a
particular phenotype (e.g., the expression level of a gene) across
many individuals as a function of the genotype of each individual
[50]. Such associations can be used to describe the effects of
genetic variants on cell biology, meaning that QTLs and GWAS
data can collectively inform numerous aspects of disease
mechanisms, including the nomination of likely causal disease
variants [49]. For example, histone QTLs are highly enriched within
autoimmune disease risk haplotypes in cell types relevant for
disease etiology, implicating differential epigenetic mechanisms at
multiple genomic loci [51].
GWAS identify groups of genetic variants that are inherited

together as a genetic haplotype. Genetic association is often
insufficient to narrow these variants down to the small group that
actually change biological processes in a genotype-dependent
manner. Additional computational methods can nominate causal
disease variants by identifying risk alleles that alter the binding of
particular regulatory proteins. An example of a current method is
Measurement of Allelic Ratios Informatics Operator (MARIO),
which identifies allele-dependent binding of regulatory proteins
at heterozygous variants [52] by examining allelic imbalance in
the reads of a functional genomics experiment. A substantial
benefit of computational methods such as MARIO is that they can
largely bypass the need for large sample sizes used in QTL
analyses. However, such methods are also limited by their
dependence on contextually-relevant datasets obtained through
methods such as chromatin immunoprecipitation sequencing
(ChIP-seq). While this information may be available for diseases
that have been well-studied, sequencing datasets for regulatory
proteins in less-common diseases may not be as abundant or
available. Therefore, continued development of new analytical
methodologies should be pursued in order to deliver the full
benefits of large-scale data analysis to a broader range of topics
in human health and disease. Collectively, QTLs, allelic imbalance
analyses, and other advances in functional genomics methodol-
ogies have enabled researchers to go beyond risk variant
identification to discover potential molecular mechanisms of
disease underlying genetic associations.

Environmental etiology of diseases
As a part of the environment, organisms are continuously exposed
to a myriad of external factors that shape health and disease.
Many environmental factors that individuals are routinely exposed
to have been associated with disease risk, including the use and
consumption of various substances, such as tobacco and alcohol,
as well as exposure to ultraviolet light [53–56]. Environmental data
can be collected prospectively through cohort studies or retro-
spectively through medical records, surveys, or government
records. For example, the addresses reported by a child across
numerous trips to the emergency department for asthma
treatment can be converted into geocodes that allow quantifica-
tion of exposure to air pollution near interstate highways and
provide information on the median home price and salary [57–59].
The environment itself is constantly changing. Industrialization

and urbanization adversely affect human health [60, 61], while
climate change in turn threatens to alter the way humans live and
interact with the environment [62]. The coronavirus disease-19
(COVID-19) pandemic has demonstrated how quickly the environ-
ment can change, with mitigation measures in place to combat
the pandemic drastically changing the prevalence of influenza and
other infectious diseases [63, 64]. In this section, we focus on
major components of the environment and how they impact
human health: the microbiome, pollutants and environmental
toxicants, viral infection, climate change, and psychosocial and
economic factors. While recent reports have comprehensively

reviewed hallmarks of environmental insults (e.g., [65]), this
section will highlight diseases that impact the immune system.

The microbiome. The microbiome includes all of the microbes
that reside on and inside the human body. Contributing up to 100
trillion cells in adults, the microbiome plays critical roles in
development, nutrition, digestion, and immunity [66–69]. In this
section, we introduce the microbiome in the context of
responding to external exposures, with an emphasis on
disease risk.
The microbiome plays a critical role in immunity by providing

protection against allergic disease. Lifestyle changes in recent
decades, especially in high-income and industrialized countries,
have led to a decrease in the incidence of infections while
increasing the incidence of autoimmune and allergic diseases [70].
According to the hygiene hypothesis, this increase in allergic and
autoimmune disease prevalence in recent decades is attributable
to a decrease in infectious disease incidence, particularly in
developed nations. While this concept is strongly supported by
epidemiological data, the mechanisms driving this relationship are
not as well characterized [71, 72]. Some gut microbiota confer
protection against food allergen sensitization through the
activation of genes involved in innate immunity [73, 74]. For
example, germ-free mice transplanted with microbiota from a
healthy infant were protected from an allergic response when
challenged with cow’s milk allergen β-lactoglobulin, while the
transfer of microbiota from infants allergic to cow’s milk resulted
in a response [74]. Transcriptional analyses of intestinal epithelial
cells from germ-free mice, healthy mice, and mice colonized with
cow’s milk allergen identified unique transcriptomic signatures
among the three groups. Notably, genes involved in epithelial
repair and metabolism were expressed as a function of the type of
colonization. In a separate study, Stefka et al. found an increased
proportion of regulatory T cells in the colonic lamina propria and
elevated concentrations of fecal immunoglobulin A of mice
colonized with Clostridia-containing microbiota, mechanistically
demonstrating how colonization with these microbiota provides
protection against allergies [73]. Furthermore, intestinal epithelial
cells from colonized mice also showed an increase in the
expression of genes with functions in the innate immune system
compared to germ-free mice. The identities of these genes further
elucidate how the microbiota confer protection for disease. For
example, regenerating islet-derived 3 beta (REG3B), which encodes
an antimicrobial peptide that regulates mucosal microbiota
composition, is upregulated in colonized mice. Moreover,
clostridia colonization induces the immunological cytokine IL-22,
resulting in intestinal epithelial cell-mediated production of
antimicrobial peptides and protection of the intestinal epithelial
barrier by increasing the number of mucus-producing goblet cells.
These findings collectively suggest that microbiota may induce
specific, immunologically relevant gene expression signatures that
help protect against allergic disease.
While the underlying molecular and microbial mechanisms

remain to be fully characterized, these exemplary studies highlight
the critical role of commensal microbiota in shaping the immune
system and, subsequently, their contributions to the modulation
of susceptibility for multiple immune-related diseases. Notably,
allergic diseases are just one of many phenotypes impacted by the
microbiome, and the microbiome itself is affected by many other
environmental factors including diet, birth mode, exposure to
antibiotics, and age [75, 76].

Pollutants and environmental toxicants. Environmental exposures
are complex and rely on several factors that include, but are not
limited to, time, geographic region, and route of exposure. In the
United States, residential proximity to sites containing environ-
mental hazards has been associated with potential reduction in life
expectancy [77] and multiple adverse health outcomes that have

S.J. Virolainen et al.

3

Genes & Immunity (2023) 24:1 – 11



been extensively reviewed [78]. More broadly, the Lancet Commis-
sion on pollution and health reported that total pollution exposure
was a leading risk factor for global estimated deaths in their analysis
of the 2019 Global Burden of Diseases, Injuries, and Risk Factors
Study data [79], attributing pollution to ~9 million deaths [79]. Given
the magnitude of these disease burden estimates, understanding
how environmental toxicants elicit adverse effects serves as a critical
step for identifying populations at risk, reducing offending sources
of emissions, and improving public health. In this section, we briefly
highlight connections between environmental exposures and
adverse health outcomes with an emphasis on ambient air pollution
and water contamination.
The World Health Organization (WHO) has estimated that

exposure to ozone and ambient air pollution, defined in their
global burden estimates as particulate matter with a diameter less
than or equal to 2.5 µm (PM2.5), can be attributed to 4 to 9 million
global deaths annually [80]. The composition of PM2.5 is diverse and
may depend on its source of introduction, with combustion-related
activities of energy production, energy use, and industrial processes
being notable sources of anthropogenic contribution [81]. Studies
investigating the associations between PM2.5 and adverse health
outcomes have implicated the particulate matter (and its composi-
tion [82]) in the initiation and progression of multiple diseases
including cardiovascular disease [83–86], asthma [87–89], and lung
cancer [90, 91], with the International Agency for Research on
Cancer classifying both outdoor pollution and its relevant constitu-
ents as carcinogenic to humans [92]. This is particularly concerning
given that the trend toward increased urbanization and anthro-
pogenic activity has been positively correlated with changes in
PM2.5 concentrations [93], reinforcing the need for air quality
monitoring and pollution reduction initiatives.
Ingestion of contaminated food and water are additional routes of

exposure, with UN-Water estimating that two billion people lacked
safely managed drinking water services in 2020 [94]. Although many
different types of contamination contribute to overall risk, here we
introduce a subset of metals that have been consistently identified
as significant environmental contaminants. In particular, arsenic is
currently considered to be a global issue that may expose between
94 million and 220 million people to high concentrations of the
metal through groundwater sources [95]. Chronic arsenic poisoning,
also known as arsenicosis, frequently manifests in the form of skin
lesions such as melanosis and keratosis [96], and has been causally
associated with multiple cancers [97]. While arsenic contamination is
often the result of natural processes, industrial wastewater and
improper disposal methods of other metals have been attributed to
the development of adverse health outcomes, including Minimata
disease (methylmercury) [98] and Itai-itai disease (cadmium) [99].
Together, these examples provide a brief introduction to the

intrinsic link that exists between environmental contaminants and
human health. However, while some of the cases presented here
implicate a single compound in elevated concentrations as the
source of toxicity, this is not necessarily representative of the
challenges that are faced when studying environmental toxicants in
the context of health and disease. For instance, individuals are more
likely to be subject to complex mixtures that occur in lower
concentrations, resulting in chronic exposure at levels that may not
elicit immediate effects. In addition, increases in chemical manu-
facturing have led to the use of thousands of chemicals lacking
adequate toxicity assessments. Thus, a paradigm exists in which the
general population is potentially exposed to more compounds
through widespread, albeit low, exposures across all stages of
development that may alter their disease risk and potentiate
adverse health outcomes later in life [100].

Viral infection. Viruses, defined as infectious particles comprised
of genetic material (DNA or RNA) surrounded by either a protein
coat or membrane [101], represent an important component of
the environment that is present virtually worldwide. In addition to

directly causing diseases such as HIV and shingles, viral infections
can increase the risk for a variety of noninfectious diseases,
including cancers, allergic diseases, and autoimmune diseases
[102–104].
Approximately two million cancer cases annually result from

infectious agents, including viruses [105]. Human papillomavirus
(HPV), Epstein-Barr virus (EBV), hepatitis B, and hepatitis C (HCV)
can cause metastatic transformation of specific cell types
originating in a variety of organs. The relationship between
infection of high-risk HPV types and anogenital cancers, particu-
larly cervical cancer, is well characterized, with recent studies
demonstrating a causal role for HPV in head and neck cancers as
well as cancers of the vulva, vagina, penis, and anus [106].
Similarly, HCV infection is associated with hepatocellular carci-
noma and subtypes of non-Hodgkin lymphoma, with recent
studies suggesting that HCV could also increase the risk of bile
duct cancers and diffuse large B-cell lymphoma [107, 108]. EBV
infection is associated with several B-cell lymphoproliferative
disorders, such as Burkitt lymphoma, Hodgkin disease, systemic
non-Hodgkin lymphoma, primary central nervous system lym-
phoma, and nasopharyngeal carcinoma [109–113]. Some cancers,
such as cervical cancer, are related to viral infections acquired
during infancy or childhood (for example HPV) that can impact
cancer onset later in life. Preventing infections via vaccination can
significantly reduce the risk of many of these lethal cancers. A
nationwide study in Sweden with over 1.5 million participants
showed that quadrivalent HPV vaccine use substantially reduces
the risk of invasive cervical cancer [114, 115].
Viral infection can also contribute to the development of

multiple allergic diseases [116]. Respiratory viruses have been
found to account for 85% of asthma exacerbations in both adults
and school-aged children [117]. In particular, respiratory syncytial
virus is a risk factor for the development of bronchiolitis and
asthma [117–119]. While the exact molecular mechanisms
mediating the epidemiological associations of viruses and asthma
are not fully understood, they likely involve virus-induced damage
of the airways, changes to immune cell activity, modifications to
the bacterial microbiome, and additional virulence factors [116].
Causality in association studies is challenged by disease-
associated physiological changes in viral defense systems. For
example, asthma is associated with rhinovirus infection, and it is
challenging to decipher from these statistical associations if
patients at risk for asthma have disease-specific physiology that
make them more susceptible to rhinoviruses or if rhinovirus
infection leads to asthma-specific physiology [120–122].
Viral infections have also been linked to several inflammatory

and autoimmune conditions. Some viruses, for example, can
induce inflammation that causes tissue damage, as is the case in
coxsackievirus B3-induced autoimmune myocarditis [123]. Infec-
tion with SARS-CoV-2, the virus that causes coronavirus disease
2019 (COVID-19), has recently been implicated in the develop-
ment of autoimmune diseases, including Kawasaki disease,
pediatric inflammatory multisystemic syndrome, coagulopathy,
antiphospholipid syndrome, and Guillain–Barre syndrome
[124, 125]. Recent studies also suggest that some severe cases
of COVID-19 may be exacerbated by the presence of autoanti-
bodies against type I interferons, meaning that autoimmunity due
to autoantibodies made by the adaptive immune system may
impair innate antiviral immunity [126]. EBV infection in particular
has been associated with a host of autoimmune diseases,
including systemic lupus erythematosus (SLE), multiple sclerosis
(MS), and rheumatoid arthritis [127–129]. Patients with SLE and MS
have a statistically elevated viral load and decreased EBV-driven
cell-mediated immunity compared to healthy controls, suggesting
that these patients have poorer control over EBV replication
[130, 131]. Thus, viral infections have been shown to be powerful
drivers of disease, with two recent studies providing highly
compelling evidence that EBV infection is causative for MS
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[132, 133]. Taken together, these examples highlight the need to
better understand how viral infections act in concert with disease
risk variants to increase risk for diseases with complex etiologies.

Climate change. Long-term shifts in temperature and weather
patterns due to human activity have both directly and indirectly
increased the prevalence of disease [134]. For example, changing
temperature and weather patterns are directly accelerating the
allergy epidemic by altering concentrations of pollens that
exacerbate allergy symptoms [135]. Further, climate change
impacts the distribution of vector-borne pathogens, altering the
length of transmission seasons and the duration that immunolo-
gically naïve populations are exposed to infectious diseases [136].
For example, current models predict that climate change across
the world will lead to a climate more suitable for dengue and
arbovirus transmission [137]. Indeed, climate change has led to
recent outbreaks of dengue, West Nile fever, and chikungunya in
Europe [138]. Some countries in sub-Saharan Africa are accus-
tomed to high levels of malaria transmission and thus have
developed effective tools to control transmission [137]—such
interventions might need to be applied more widely. However,
interventions are currently not available for blocking transmission
of viruses such as arboviruses and dengue. This leaves populations
impacted by climate change-induced virus exposure vulnerable to
epidemic-level spread and morbidity.
Climate change can also indirectly increase disease suscept-

ibility by altering socioeconomic factors that leave individuals
vulnerable to disease. A recent study showed that warming
temperatures and increasing rainfall variability due to climate
change adversely affect food security and diet diversity. Such
effects are particularly strong in low-income regions, leading to
increased malnutrition and impaired childhood development
[139, 140]. Thus, the broad impacts of climate change are
expected to contribute to disease prevalence both directly and
indirectly, highlighting the need to take into consideration how a
rapidly changing environment may affect the public health of
global communities.

Racism, stress, and economic factors. Healthcare disparities are
defined as preventable differences in health outcomes that
negatively impact groups of people with shared socioeconomic
or demographic features. Such differences in disease risk are often
driven by environmental exposures [141–145]. Occupational and
general environmental exposure to toxicants (e.g., lead in drinking
water and paint), rates of nicotine use, and access to high-quality
primary care are examples of environmental exposures that
impact racial and socioeconomic groups disproportionally
[146, 147]. Stress and trauma are well-established environmental
risk factors for diseases ranging from heart disease to anxiety that
disproportionately impact people who are Black [146, 147]. In a
recent study, Resztak et al. developed an approach to derive
transcriptional signatures from peripheral blood RNA-seq samples
of asthmatic children in the metropolitan Detroit area that were
correlated with various psychosocial factors. Among other
findings, the authors reported that psychosocial factors altered
the expression of 169 genes that have been causally linked to
asthma or allergic disease and concluded that the modulation of
the immune system may serve as an important mediator between
these factors and asthma risk [148]. The deeper implications of this
study suggest that molecular-based approaches, when coupled
with statistical modeling techniques, could be used to better
understand how extrinsic environmental factors may play a
disproportionate role in the health and wellbeing of an individual.
Taken together, these studies demonstrate that the health of an
individual is intricately shaped by their surroundings. Institutional
discrimination, which can include socioeconomic status and
systemic racism, may dramatically alter the extrinsic factors of
an individual’s environment, which may subsequently increase the

risk of particular adverse health outcomes. It is therefore
imperative for the research community to identify cohorts that
are representative of our diverse communities and use current
methodologies to identify additional causes of adverse health
outcomes. As molecular-based approaches continue to improve,
novel techniques may serve as an avenue for identifying
previously unknown risk factors, which could then pave the way
for developing solutions that would improve public health and
close the gap in healthcare disparities.

Gene × environment interactions
While genetic and environmental factors can independently
increase the risk of disease, the interactions between these risk
factors (G × E) also have a profound influence on human health.
An expanding number of studies have found that disease risk
variants impact environmental risk factors, with the implication
being that environmental exposures can elicit an altered response
in the context of genetic risk variants [149–151]. Identification of
G × E interactions and their contributions to disease etiology
provides a more comprehensive understanding of the mechan-
isms driving risk for many human diseases. In this section, we
discuss major categories of environmental factors currently
implicated in G × E mechanisms.

Environmental toxicants. There are many forms of environmental
toxicants, and they can influence many diseases. Toxicants
represent a special class of G × E interactions because the
relationship between the two components is bidirectional—the
environment can directly alter the genotype of an individual (i.e.,
through a somatic mutation), and toxicant metabolism can be
affected by inherited genetic variants (i.e., through germline
inherited polymorphisms) [152]. Toxicants that cause cancer are
called carcinogens. An increase in the amount of carcinogens in
the environment has contributed to a global increase in cancer
incidence [100]. When carcinogens directly contribute to tumor
development, often through a combination of somatic mutations
and epigenetic modifications, these changes can directly result in
genotype-dependent alterations impacting DNA repair mechan-
isms or gene regulatory mechanisms [153].
There are numerous ways that environmental toxicants can

interact with germline polymorphisms affecting the uptake,
metabolism, and transport of toxic compounds. For example,
genetic variants associated with arsenic metabolism at the
10q24.32 locus near AS3MT are associated with inefficient arsenic
metabolism and subsequent toxic arsenic exposure [154].
Similarly, a missense variant in the FTCD gene has been proposed
to affect the efficiency of arsenic metabolism, potentially by
reducing the availability of methyl groups involved in its
detoxification [155]. Arsenic contamination in drinking water
sources is considered to be a widespread problem and it has been
estimated that over 100 million people worldwide are exposed to
concentrations exceeding WHO-recommended limits [156]. As a
consequence, arsenic is expected to be a significant contributor to
disease burden. Paul et al. provide an in-depth review supporting
the role of genetic variation in arsenic-induced toxicity, suggesting
that the effects of arsenic on the health of an individual have a
genotype-dependent component that may account for differ-
ences in disease outcome [157]. Like other toxicants, arsenic-
related toxicities depend on a multitude of factors including the
concentration of the metal, the length of exposure, and the
efficiency of its detoxification pathways within the body.
The metabolism of other heavy metals provides additional

support for the hypothesis that common polymorphisms con-
tribute to diseases through G × E mechanisms [158]. For example,
metallothioneins are metal-binding proteins that regulate metal
distribution and help protect cells against heavy metal toxicity. A
genetic variant in the core promoter of metallothionein 2A (MT2A)
affects the expression level of MT2Am, which is inversely
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correlated with the accumulation of cadmium and copper in
sinonasal inverted papilloma tissues [159]. Genetic polymorphisms
in genes involved in heavy metal metabolism are of significant
public health importance because most individuals experience
chronic exposure to some level of heavy metals [160].

Pollution. The worldwide pollution crisis continues to negatively
impact human health. In the example of asthma, both outdoor
and indoor air pollution can interact with genetic variants to
increase disease risk [161]. A G × E study in mice demonstrated
that the magnitude of airway hyperreactivity in response to diesel
exhaust particles is dependent upon genotypes at the Dapp1
locus [162]. In humans, GWAS identified a G × E interaction
between diesel exhaust-elicited airway hyperreactivity and a locus
on chromosome 3 encoding DAPP1 [162]. Asthma prevalence is
higher among low-income African-American children, who are
more likely to reside near highways and industrial areas. The
health disparity of asthma can thus be partially attributed to the
fact that pollution exposure disproportionately affects low-income
populations. Because the currently known genetic and environ-
mental risk factors cannot fully explain the risk of asthma, there is
a tremendous need to further delineate additional G × E
interactions.

Viruses. Viruses interact with their hosts on many levels. When
human cells encounter viruses, the pattern recognition and
adaptive immune receptors lead to immunological responses
aimed at clearing viral infection. Some viruses infect cells without
killing them, transitioning to a latent infection. In latency, the virus
continues to produce low levels of certain genes, including those
encoding transcriptional regulators that interact with the virus and
host genomes. The most well-studied GxE viral mechanisms
involve viral transcriptional regulatory proteins that interact with
the human genome at disease risk variants and alter human gene
expression. For example, Epstein-Barr nuclear antigen 2 (EBNA2)
regulates human gene expression levels by mimicking activated
Notch [163]. Similar to Notch, EBNA2 can influence gene
expression by impacting chromatin looping, chromatin accessi-
bility, and human TF binding [164–166]. The genetic locations of
these epigenetic effects are highly enriched for autoimmune
genetic risk variants. For example, EBNA2 binding events intersect
nearly half of known lupus and MS risk loci [52, 164]. Similarly,
EBNA2-dependent altered chromatin accessibility and looping
events are highly enriched for autoimmune genetic risk variants
[164]. Complementary analyses in the same study demonstrate
that EBNA2-dependent binding, chromatin accessibility, and
chromatin looping at genetic autoimmune disease risk variants
are often genotype-dependent [164]. EBNA2 and other EBV
proteins are amongst the most highly studied viral transcriptional
regulators [167], and it is likely that many other virally encoded
transcriptional regulators interact with the human genome at
disease risk variants to mediate GxE effects on transcription, cell
biology, and disease risk.

Genetic modifiers of infectious diseases. In addition to increasing
disease risk through interaction with human regulatory elements
at disease risk variants, mechanisms initiated by viruses and other
infectious agents can also be impacted by rare mutations in key
regulators of the immune response. For example, the broad
spectrum of disease severity in response to infection with
pathogens such as SARS-CoV-2 and influenza is due in part to
host genetic variation at loci encoding regulators of antiviral
cytokines and innate pattern recognition receptors. Rare muta-
tions in the interferon regulatory factor 7 (IRF7) gene, a key
regulator of antiviral type I Interferons (IFN-I), have been shown to
underlie cases of severe influenza COVID-19 pneumonia. Similarly,
whole-exome sequencing on an otherwise healthy child with
influenza-induced life-threatening acute respiratory distress

syndrome (ARDS) revealed two compound heterozygous muta-
tions in IRF7, resulting in very little IFN-I production in response to
influenza infection [168]. IRF7 is activated primarily by stimulation
of endosomal Toll-Like Receptors (TLRs), resulting in phosphoryla-
tion and nuclear localization where IRF7 regulates IFN-I gene
expression [169]. Mechanistically, the two mutant loss-of-function
alleles result in IRF7 protein that (1) localizes to the nucleus
without phosphorylation and (2) does not localize to the nucleus
following phosphorylation, respectively. Surprisingly, this patient’s
adaptive responses (as measured through B and T cell responses
to infection) were normal, suggesting that the life-threatening
disease was caused by a blunting of the innate response due to
the mutations in the two copies of IRF7. In the case of COVID-19,
3.5% of patients with life-threatening COVID-19 pneumonia in one
study had genetic defects in TLR-3 and IRF7-dependent signaling
pathways of IFN-I [170]. Moreover, deficiencies in the IFN-I
pathway are estimated to contribute to nearly 10% of pediatric
COVID-19 hospitalizations, despite this age group being classified
as low risk for severe disease [171]. These examples illustrate how
inherited deficiencies in regulators of the immune response to
infection translate to severe outcomes for relatively common
diseases.
While some rare loss-of-function mutations can result in life-

threatening infection, such effects are likely virus-specific and
host-cell intrinsic. A recent study in otherwise healthy humans
with inherited IRF7 deficiency showed that while affected
individuals were highly susceptible to infections of the respiratory
tract, these patients mounted strong immune responses to other
pathogens and even retained strong adaptive immune responses
to respiratory viruses [172]. Overall, numerous studies have
identified specific mutations that can confer risk for severe
disease from specific infectious agents, emphasizing the need for
future studies that comprehensively identify genetic variants that
are impacted by pathogens that can be used to identify patients
who are potentially vulnerable.

Immunological syndromes and somatic genetic mutations in genes
associated with pathogen sensing. The etiology of inflammatory
syndromes and diseases that arise in adulthood can be challen-
ging to identify. Somatic genetic mutations that occur after zygote
formation have been found to drive some of these complex
inflammatory disorders [173]. For example, somatic mutations in
NLRP3, which encodes an important intracellular sensor of
infection, have numerous links to autoinflammatory syndromes
[174–178]. Schnitzler’s syndrome is a rare adult-onset autoin-
flammatory disease that invovles both hematological and
rheumatological features, and 90% of patients with Schnitzler’s
syndrome who also develop macroglobulinemia carry a somatic
mutation in the Toll-like receptor adapter MYD88 [179]. Patients
with Schnitzler’s syndrome who develop a non-malignant expan-
sion of hematopoietic stem cells have somatic mutations in TET2
and U2AF1 that are involved in transcriptional and splicing
regulation and can impact the production of reactive oxygen
species that can trigger the NLRP3-driven inflammasome [180].
With heterogenous symptoms and clinical presentations,

recruiting a sufficient number of patients to assess genetic causes
of disease is a challenge. Beck et al. addressed this challenge by
sequencing the exomes of patients with late-onset inflammatory
syndromes that involved peripheral blood abnormalities and were
not responsive to treatment [181]. Despite the clinical hetero-
geneity, somatic deleterious mutations in UBA1 were identified in
a subset of male patients. UBA1 encodes the E1 enzyme that
initiates ubiquitylation, with systemic inflammation resulting from
deletion of this gene in zebrafish [181]. Subsequent experiments
demonstrated that the myeloid cells (neutrophils and monocytes)
and myeloid progenitor stem cells but not the lymphocytes (B and
T cells) carried the somatic mutation. In many cases, it is only
when the genetic etiology of these inflammatory diseases are
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appropriately identified that effective treatments are provided.
Each of the examples above involve somatic mutations that
disrupt sensors and adapters of pathogen detection, and the
impact of infection in these patients is yet to be fully elucidated.
With inflammatory disease at the junction between the gut

microbiome and human gastrointestinal track, somatic mutations
have also been studied in the context of Crohn’s Disease and
Ulcerative Colitis. Indeed, somatic mutations in the colonic crypts
of patients with these inflammatory bowel diseases are found at a
rate 2.4-fold higher than in controls [182]. In particular, an
accumulation of somatic mutations in genes known to be
important in the pathogenesis of IBD was observed, including
those in the IL17 signaling pathway [182].

Hormones and sex chromosome composition. An individual’s sex
chromosome composition can play a significant role in immune
responses and disease severity. However, most pharmaceutical
interventions, including most drugs and vaccines, are given
without regard to an individual’s sex chromosomes. Because the
words male and female can refer to both sex and gender, we focus
on chromosomes and hormones in this section of the review.
Individuals with two X chromosomes and those with one X
chromosome differ in immunological responses to foreign and self
antigens. These differences subsequently contribute to variations
in susceptibility to infectious diseases, incidence of autoimmune
diseases, and responses to vaccines [183]. Indeed, individuals with
an XY karyotype are more likely to die from COVID-19 than XX
individuals. While such a bias in mortality is consistent with other
infections, the specific underlying mechanisms are not fully
understood [184]. Moreover, XX individuals typically develop
more robust antibody responses and adverse reactions to vaccines
[185]. Reasons likely include differences in sex steroid hormones
(e.g., estrogen and testosterone) and differences in adaptive
immune responses, with XX individuals exhibiting greater anti-
body responses and elevated humoral and cell-mediated immu-
nity compared to XY individuals. In addition, several immune-
related genes encoding proteins such as the IL-2 receptor and
multiple Toll-like receptors (TLRs) are encoded on the X
chromosome. Epidemiological studies in genetically diverse mice
and cohorts of patients with XXX, XXY, or X0 to study the role of
sex chromosomes independent of sex hormones have been of
great utility for understanding sex chromosome dependent
diseases [186–191]. It is critical to consider disease risk and
potential G × E mechanisms in the context of sex differences that
influence immune responses.

Possibilities and challenges for studying G × E interactions
The identification and characterization of G × E interactions in
humans is crucial to combating human disease [192]. Individuals
are born with the genetic variants that they inherit from their
parents, and these variants are not easily manipulated. However,
many environmental exposures are modifiable or preventable
through public policy initiatives, vaccines, and/or lifestyle choices.
Likewise, targeting of G × E interactions, for example through
genome-editing, holds the promise to enable the development of
preventative strategies and therapies. Recent advances in
machine learning-based approaches to G × E studies offer one
promising solution for learning new G × E mechanisms [148, 193].
However, such methods are still relatively in their infancy, and
numerous challenges remain for discovering how the environ-
ment works in the context of DNA variation to increase
disease risk.
Multiple testing burden is a major challenge in G × E research

because of the large sample size required to obtain statistically
meaningful associations. A simple solution is to use biologically
guided hypotheses to limit the search space, e.g., by limiting
analysis to a particular pathway. Another solution is to limit the
amount of genetic variation while assessing multiple

environmental exposures. For example, a recent study exposed
induced pluripotent stem cells derived from six individuals to a
variety of treatments to study the environmental effects on allelic
gene expression [194]. Because allelic expression was used as a
measurement of G × E interactions, a smaller sample size could be
used to interrogate environmental exposures. Continued devel-
opment of additional solutions to the multiple testing problem
remains critical.
The environment is difficult to measure and quantify consis-

tently. Many G × E studies address this challenge by developing
scores to rank and prioritize environmental exposures. In a recent
study, variance quantitative trait locus (vQTL) analysis was
performed by associating particular genetic variants associated
with phenotypic variability for over 5 million genetic variants in
300,000 individuals. These efforts identified 75 vQTLs highly
enriched for G × E effects [195]. This study demonstrates that G × E
interactions can be identified without direct measurement of
environmental exposures in a large set of samples. The develop-
ment of additional methodologies will be necessary to quantify
specific environmental exposures, identified from large public
resources, that increase disease risk.

CONCLUSIONS
The etiology of human disease is complex, with genetic,
environmental, and G × E contributors. Studies aimed at genetic
or environmental contributors individually can miss important
G × E interactions that contribute to disease. A growing body of
work has produced compelling evidence linking G × E interactions
to a wide range of human diseases. The availability of new
datasets with genetic and environmental measurements, in
conjunction with the development of novel analytical approaches,
will enable the discovery of additional G × E interactions. These
discoveries will ultimately lead to impactful interventions that
improve human health.
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