Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection

Abstract

Organ (stem cell) transplantation is the most effective treatment for advanced organ failure. Neu5Gc (N-hydroxyacetylneuraminic acid) is a pathogenic non-human sialic acid, which is very similar to the molecular structure of Neu5Ac (N-acetylneuraminic acid) in human body. Neu5Gc has the function of “immune disguise”, which is the main obstacle to transplantation. Gene knockout such as cytidine monophosphate-N-acetylneuraminidase (CMAH) reduces donor antigenicity, making xenotransplantation from fiction to reality. Exploring the immune disguise event in this emerging field has become a hot topic in the research of transplantation immune tolerance mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue deposition and intracellular uptake of Neu5Gc.
Fig. 2: The combination of xenoantigen and antibody induces immune rejection.
Fig. 3: Functional changes of immune cell-xenoantigen-antibody complex.
Fig. 4: A speculation of Neu5GC related Neu1 resistance in microglia and macrophages.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are currently under embargo while the research findings are commercialized. Requests for data, 12 months after publication of this article, will be considered by the corresponding authors.

References

  1. Yue Y, Xu W, Kan Y, Zhao HY, Zhou Y, Song X, et al. Extensive germline genome engineering in pigs. Nat Biomed Eng. 2021;5:134–43.

    Article  CAS  PubMed  Google Scholar 

  2. Porrett PM, Orandi BJ, Kumar V, Houp J, Anderson D, Cozette Killian, A, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transpl: Off J Am Soc Transplant Am Soc Transpl Surg. 2022;22:1037–53.

    Article  Google Scholar 

  3. Dai H, Lan P, Zhao D, Abou-Daya K, Liu W, Chen W, et al. PIRs mediate innate myeloid cell memory to nonself MHC molecules. Science. 2020;368:1122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hurh S, Kang B, Choi I, Cho B, Lee EM, Kim H, et al. Human antibody reactivity against xenogeneic N-glycolylneuraminic acid and galactose-α-1,3-galactose antigen. Xenotransplantation. 2016;23:279–92.

    Article  PubMed  Google Scholar 

  5. Ma F, Deng L, Secrest P, Shi L, Zhao J, Gagneux P. A Mouse Model for dietary xenosialitis: antibodies to xenoglycan can reduce fertility. J Biol Chem. 2016;291:18222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chou HH, Hayakawa T, Diaz S, Krings M, Indriati E, Leakey M, et al. Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc Natl Acad Sci USA. 2002;99:11736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawanishi K, Dhar C, Do R, Varki N, Gordts PLSM, Varki A. NHuman species-specific loss of CMP-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc Natl Acad Sci USA. 2019;116:16036–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooper DKC, Hara H. “You cannot stay in the laboratory forever”*: Taking pig kidney xenotransplantation from the laboratory to the clinic. EBioMedicine. 2021;71:103562.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021;184:3109–24. e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burlak C, Paris LL, Lutz AJ, Sidner RA, Estrada J, Li P, et al. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs. Am J Transpl: Off J Am Soc TransplAm Soc Transpl Surg. 2014;14:1895–900.

    Article  CAS  Google Scholar 

  11. Dong X, Hara H, Wang Y, Wang L, Zhang Y, Cooper DK, et al. Initial study of α1,3-galactosyltransferase gene-knockout/CD46 pig full-thickness corneal xenografts in rhesus monkeys. Xenotransplantation. 2017;24:e12282.

    Article  Google Scholar 

  12. Smood B, Hara H, Cleveland DC, Cooper DKC. In search of the ideal valve: optimizing genetic modifications to prevent bioprosthetic degeneration. The. Ann Thorac Surg. 2019;108:624–35.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang R, Wang Y, Chen L, Wang R, Li C, Li X, et al. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomaterialia. 2018;72:196–205.

    Article  CAS  PubMed  Google Scholar 

  14. Martens GR, Reyes LM, Li P, Butler JR, Ladowski JM, Estrada JL, et al. Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA Class I knockout pigs. Transplantation. 2017;101:e86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang RG, Ruan M, Zhang RJ, Chen L, Li XX, Fang B, et al. Antigenicity of tissues and organs from GGTA1/CMAH/β4GalNT2 triple gene knockout pigs. J Biomed Res. 2019;33:235–43.

    PubMed Central  Google Scholar 

  16. Kim GA, Lee EM, Jin JX, Lee S, Taweechaipaisankul A, Hwang JI, et al. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res. 2017;26:435–45.

    Article  CAS  PubMed  Google Scholar 

  17. Ma D, Hirose T, Lassiter G, Sasaki H, Rosales I, Coe TM, et al. Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques. Am J Transpl: Off J Am Soc Transpl Am Soc Transpl Surg. 2022;22:46–57.

    Article  Google Scholar 

  18. Merrill JP, Murray JE, Takacs FJ, Hager EB, Wilson RE, Dammin GJ. Successful transplantation of kidney from a human cadaver. JAMA. 1963;185:347–53.

    Article  CAS  PubMed  Google Scholar 

  19. Murray JE, Merrill JP, Harrison JH, Wilson RE, Dammin GJ. Prolonged survival of human-kidney homografts by immunosuppressive drug therapy. N. Engl J Med. 1963;268:1315–23.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Yang Y, Li X, Chen D, Tang G, Men T. Thalidomide ameliorate graft chronic rejection in an allogenic kidney transplant model. Int Immunopharmacol. 2019;71:32–39.

    Article  CAS  PubMed  Google Scholar 

  21. Rana A, Ackah RL, Webb GJ, Halazun KJ, Vierling JM, Liu H, et al. No gains in long-term survival after liver transplantation over the past three decades. Ann Surg. 2019;269:20–27.

    Article  PubMed  Google Scholar 

  22. Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol. 2020;17:719–39.

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen DH, Tangvoranuntakul P, Varki A. Effects of natural human antibodies against a nonhuman sialic acid that metabolically incorporates into activated and malignant immune cells. J Immunol. 2005;175:228–36.

    Article  CAS  PubMed  Google Scholar 

  24. Berre LLE, Danger R, Mai HL, Amon R, Leviatan Ben-Arye S, Bruneau S, et al. Elicited and pre-existing anti-Neu5Gc antibodies differentially affect human endothelial cells transcriptome. Xenotransplantation. 2019;26:e12535.

    Article  PubMed  Google Scholar 

  25. Chen G, Qian H, Starzl T, Sun H, Garcia B, Wang X, et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med. 2005;11:1295–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ekser B, Long C, Echeverri GJ, Hara H, Ezzelarab M, Lin CC, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance. Am J Transpl: Off J Am Soc Transpl Am Soc Transpl Surg. 2010;10:273–85.

    Article  CAS  Google Scholar 

  27. Breimer ME. Gal/non-Gal antigens in pig tissues and human non-Gal antibodies in the GalT-KO era. Xenotransplantation. 2011;18:215–28.

    Article  PubMed  Google Scholar 

  28. Byrne GW, Mcgregor CGA, Breimer ME. Recent investigations into pig antigen and anti-pig antibody expression. Int J Surg. 2015;23:223–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Diswall M, Angstr M J, Karlsson H, Phelps CJ, Ayares D, Teneberg S, et al. Structural characterization of alpha1,3-galactosyltransferase knockout pig heart and kidney glycolipids and their reactivity with human and baboon antibodies. Xenotransplantation. 2010;17:48–60.

    Article  PubMed  Google Scholar 

  30. Park JY, Park MR, Bui HT, Kwon DN, Kang MH, Oh M, et al. α1,3-galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation. Cell Reprogramming. 2012;14:353–63.

    Article  CAS  Google Scholar 

  31. Shim J, Ko N, Kim HJ, Lee Y, Lee JW, Jin DI, et al. Human immune reactivity of GGTA1/CMAH/A3GALT2 triple knockout Yucatan miniature pigs. Transgenic Res. 2021;30:619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee W, Long C, Ramsoondar J, Ayares D, Cooper DK, Manji RA, et al. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation. 2016;23:370–80.

    Article  PubMed  Google Scholar 

  33. Rousse J, Salama A, Leviatan Ben-Arye S, Hruba P, Slatinska J, Evanno G, et al. Quantitative and qualitative changes in anti-Neu5Gc antibody response following rabbit anti-thymocyte IgG induction in kidney allograft recipients. Eur J Clin Investig. 2019;49:e13069.

    Article  CAS  Google Scholar 

  34. Couvrat-Desvergnes G, Salama A, Berre LLE, Evanno G, Viklicky O, Hruba P, et al. Rabbit antithymocyte globulin-induced serum sickness disease and human kidney graft survival. J Clin Investig. 2015;125:4655–65.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bergfeld AK, Pearce OM, Diaz SL, Lawrence R, Vocadlo DJ, Choudhury B, et al. Metabolism of vertebrate amino sugars with N-glycolyl groups: incorporation of N-glycolylhexosamines into mammalian glycans by feeding N-glycolylgalactosamine. J Biol Chem. 2012;287:28898–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tangvoranuntakul P, Gagneux P, Diaz S, Bardor M, Varki N, Varki A, et al. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc Natl Acad Sci USA. 2003;100:12045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perota A, Galli C. N-Glycolylneuraminic Acid (Neu5Gc) Null Large Animals by Targeting the CMP-Neu5Gc Hydroxylase (CMAH). Front Immunol. 2019;10:2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11:228–32.

    Article  CAS  PubMed  Google Scholar 

  39. Pham T, Gregg CJ, Karp F, Chow R, Padler-Karavani V, Cao H, et al. Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood. 2009;114:5225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bardor M, Nguyen DH, Diaz S, Varki A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem. 2005;280:4228–37.

    Article  CAS  PubMed  Google Scholar 

  41. Martin PT, Golden B, Okerblom J, Camboni M, Chandrasekharan K, Xu R, et al. A comparative study of N-glycolylneuraminic acid (Neu5Gc) and cytotoxic T cell (CT) carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle. PloS One. 2014;9:e88226.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu A, Hurst R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation. 2002;9:376–81.

    Article  PubMed  Google Scholar 

  43. Eleftheriou P, Kynigopoulos S, Giovou A, Mazmanidi A, Yovos J, Skepastianos P, et al. Prevalence of anti-Neu5Gc antibodies in patients with hypothyroidism. BioMed Res Int. 2014;2014:963230.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Komoda H, Okura H, Lee CM, Sougawa N, Iwayama T, Hashikawa T, et al. Reduction of N-glycolylneuraminic acid xenoantigen on human adipose tissue-derived stromal cells/mesenchymal stem cells leads to safer and more useful cell sources for various stem cell therapies. Tissue Eng Part A. 2010;16:1143–55.

    Article  CAS  PubMed  Google Scholar 

  45. Ji S, Wang F, Chen Y, Yang C, Zhang P, Zhang X, et al. Developmental changes in the level of free and conjugated sialic acids, Neu5Ac, Neu5Gc and KDN in different organs of pig: a LC-MS/MS quantitative analyses. Glycoconj J. 2017;34:21–30.

    Article  CAS  PubMed  Google Scholar 

  46. Bashir S, Fezeu LK, Leviatan Ben-Arye S, Yehuda S, Reuven EM, Szabo F, et al. Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Santé study. BMC Med. 2020;18:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taylor RE, Gregg CJ, Padler-Karavani V, Ghaderi D, Yu H, Huang S, et al. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med. 2010;207:1637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol. 2010;28:863–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reuven EM, Leviatan Ben-Arye S, Marshanski T, Breimer ME, Yu H, Fellah-Hebia I, et al. Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation. 2016;23:381–92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Scobie L, Padler-Karavani V, Bas-Bernardet SLE, Crossan C, Blaha J, Matouskova M, et al. Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts. J Immunol. 2013;191:2907–15.

    Article  CAS  PubMed  Google Scholar 

  51. Amon R, Ben-Arye SL, Engler L, Yu H, Lim N, Berre LL, et al. Glycan microarray reveal induced IgGs repertoire shift against a dietary carbohydrate in response to rabbit anti-human thymocyte therapy. Oncotarget. 2017;8:112236–44.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Salama A, Evanno G, Lim N, Rousse J, Berre LLE, Nicot A, et al. Anti-gal and anti-Neu5Gc responses in nonimmunosuppressed patients after treatment with rabbit antithymocyte polyclonal IgGs. Transplantation. 2017;101:2501–7.

    Article  CAS  PubMed  Google Scholar 

  53. Tector AJ, Mosser M, Tector M, Bach JM. The possible role of Anti-Neu5Gc as an obstacle in Xenotransplantation. Front Immunol. 2020;11:622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cimeno A, Hassanein W, French BM, Powell JM, Burdorf L, Goloubeva O, et al. N-glycolylneuraminic acid knockout reduces erythrocyte sequestration and thromboxane elaboration in an ex vivo pig-to-human xenoperfusion model. Xenotransplantation, 2017;24. https://doi.org/10.1111/xen.12339.

  55. Tahara H, Ide K, Basnet NB, Tanaka Y, Matsuda H, Takematsu H, et al. Immunological property of antibodies against N-glycolylneuraminic acid epitopes in cytidine monophospho-N-acetylneuraminic acid hydroxylase-deficient mice. J Immunol. 2010;184:3269–75.

    Article  CAS  PubMed  Google Scholar 

  56. Gao B, Long C, Lee W, Zhang Z, Gao X, Landsittel D, et al. Anti-Neu5Gc and anti-non-Neu5Gc antibodies in healthy humans. PloS One. 2017;12:e0180768.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fischer K, Rieblinger B, Hein R, Sfriso R, Zuber J, Fischer A, et al. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2. Xenotransplantation. 2020;27:e12560.

    Article  PubMed  Google Scholar 

  58. Foote JB, Jagdale A, Yamamoto T, Hara H, Bikhet MH, Schuurman HJ, et al. Histopathology of pig kidney grafts with/without expression of the carbohydrate Neu5Gc in immunosuppressed baboons. Xenotransplantation. 2021;28:e12715.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mai HL, Treilhaud M, Ben-Arye SL, Yu H, Perreault H, Ang E, et al. Poor patient and graft outcome after induction treatment by antithymocyte globulin in recipients of a kidney graft after nonrenal organ transplantation. Transpl Direct. 2018;4:e357.

    Article  Google Scholar 

  60. Dhar C, Sasmal A, Varki A. From “Serum Sickness” to “Xenosialitis”: past, present, and future significance of the non-human sialic acid Neu5Gc. Front Immunol. 2019;10:807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawanishi K, Coker JK, Grunddal KV, Dhar C, Hsiao J, Zengler K, et al. Dietary Neu5Ac intervention protects against atherosclerosis associated with human-like Neu5Gc loss-brief report. Arterioscler thromb Vasc Biol. 2021;41:2730–9.

    Article  CAS  PubMed  Google Scholar 

  62. Calafiore AM, Haverich A, Gaudino M, Mauro MD, Fattouch K, Prapas S, et al. Immunoreaction to xenogenic tissue in cardiac surgery: alpha-Gal and beyond. Eur J Cardiothorac Surg. 2022;62:ezac115.

    Article  PubMed  Google Scholar 

  63. Samraj AN, Pearce OM, Ubli HL, Crittenden AN, Bergfeld AK, Banda K, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci USA. 2015;112:542–7.

    Article  CAS  PubMed  Google Scholar 

  64. Hedlund M, Padler-Karavani V, Varki NM, Varki A. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci USA. 2008;105:18936–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Galili U. Natural anti-carbohydrate antibodies contributing to evolutionary survival of primates in viral epidemics? Glycobiology. 2016;26:1140–50.

    CAS  PubMed  Google Scholar 

  66. Padler-Karavani V, Tremoulet AH, Yu H, Chen X, Burns JC, Varki A. A simple method for assessment of human anti-Neu5Gc antibodies applied to Kawasaki disease. PloS One. 2013;8:e58443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gołaszewska E, Kurowska E, Duk M, Kościelak J. Paul-Bunnell antigen and a possible mechanism of formation of heterophile antibodies in patients with infectious mononucleosis. Acta Biochimica Polonica. 2003;50:1205–11.

    Article  PubMed  Google Scholar 

  68. Okerblom JJ, Schwarz F, Olson J, Fletes W, Ali SR, Martin PT, et al. Loss of CMAH during human evolution primed the monocyte-macrophage lineage toward a more inflammatory and phagocytic state. J Immunol. 2017;198:2366–73.

    Article  CAS  PubMed  Google Scholar 

  69. Varki A. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology. J Autoimmun. 2017;83:134–42.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao Y, Mahajan G, Kothapalli CR, Sun XL. Sialylation status and mechanical properties of THP-1 macrophages upon LPS stimulation. Biochem Biophys Res Commun. 2019;518:573–8.

    Article  CAS  PubMed  Google Scholar 

  71. Naito-Matsui Y, Takada S, Kano Y, Iyoda T, Sugai M, Shimizu A, et al. Functional evaluation of activation-dependent alterations in the sialoglycan composition of T cells. J Biol Chem. 2014;289:1564–79.

    Article  CAS  PubMed  Google Scholar 

  72. Naito Y, Takematsu H, Koyama S, Miyake S, Yamamoto H, Fujinawa R, et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol Cell Biol. 2007;27:3008–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frei R, Ferstl R, Roduit C, Ziegler M, Schiavi E, Barcik W, et al. Exposure to nonmicrobial N-glycolylneuraminic acid protects farmers’ children against airway inflammation and colitis. J Allergy Clin Immunol. 2018;141:382–90. e7

    Article  CAS  PubMed  Google Scholar 

  74. Buchlis G, Odorizzi P, Soto PC, Pearce OM, Hui DJ, Jordan MS, et al. Enhanced T cell function in a mouse model of human glycosylation. J Immunol. 2013;191:228–37.

    Article  CAS  PubMed  Google Scholar 

  75. Sumida M, Hane M, Yabe U, Shimoda Y, Pearce OM, Kiso M, et al. Rapid Trimming of Cell Surface Polysialic Acid (PolySia) by exovesicular sialidase triggers release of preexisting surface neurotrophin. J Biol Chem. 2015;290:13202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Seyrantepe V, Iannello A, Liang F, Kanshin E, Jayanth P, Samarani S, et al. Regulation of phagocytosis in macrophages by neuraminidase 1. J Biol Chem. 2010;285:206–15.

    Article  CAS  PubMed  Google Scholar 

  77. Rodgers J, Sundararaj K, Bruner E, Wolf B, Nowling TK. The role of neuraminidase 1 (NEU1) in cytokine release by primary mouse mesangial cells and disease outcomes in murine lupus nephritis. Autoimmunity. 2021;54:163–75.

    Article  CAS  PubMed  Google Scholar 

  78. Natori Y, Nasui M, Edo K, Sato S, Sakurai T, Kizaki T, et al. NEU1 sialidase controls gene expression and secretion of IL-6 and MCP-1 through NF-κB pathway in 3T3-L1 adipocytes. J Biochem. 2017;162:137–43.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the students (Yue Luo and Xiaoxia Luo) from the Department of Medical Laboratory of Fujian Medical University for their support in language processing.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81871293, No. 82172953), the National Natural Science Foundation of Fujian (2021J02036 and 2021J01716). These funding sources played key supportive role for sample collection, molecular analysis of patient samples, and bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript and approved the final version.

Corresponding authors

Correspondence to Qicai Liu, Zhibo Zhang or Shangeng Weng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, F., Lin, Y., Liu, G. et al. Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection. Genes Immun 23, 175–182 (2022). https://doi.org/10.1038/s41435-022-00182-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-022-00182-8

This article is cited by

Search

Quick links