Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The presence of interferon affects the progression of non-alcoholic fatty liver disease

Abstract

Inflammation and metabolic dysfunction are hallmarks of the progression of non-alcoholic fatty liver disease (NAFLD), which is the fastest-growing liver disease worldwide. Emerging evidence indicates that innate immune mechanisms are essential drivers of fibrosis development in chronic inflammatory liver diseases, including NAFLD. In this study, 142 NAFLD patients were genotyped for three IFNL4 single-nucleotide variants in order to investigate the genetic relationship between IFNL4 and fibrosis in NAFLD patients. We observed an overrepresentation of the non-functional IFNL4 allele in patients with significant fibrosis (>F2). Next, we investigated the potential protective role of interferon (IFN) in relation to the development of liver fibrosis in an animal model of non-alcoholic steatohepatitis (NASH). In contradiction to our hypothesis, the results showed an increase in fibrosis in IFN treated animals. Our study clearly indicates that IFN is able to affect the development of liver fibrosis, although our clinical and experimental data are conflicting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interferon response to different dosages of rIFNα.
Fig. 2: Body weight changes during the 16-week experiment.
Fig. 3: Interferon response during the 16-week experiment.
Fig. 4: Blood and tissue evaluation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, MM, upon reasonable request. The data are not publicly available due to the privacy of the human participants.

References

  1. Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148:547–55.

    Article  Google Scholar 

  2. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20.

    Article  Google Scholar 

  3. EASL. EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388–402.

    Google Scholar 

  4. Tilg H, Moschen AR.Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis.Hepatology. 2010;52:1836–46.

    Article  CAS  Google Scholar 

  5. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–22.

    Article  CAS  Google Scholar 

  6. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41:1100–4.

    Article  CAS  Google Scholar 

  7. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41:1105–9.

    Article  CAS  Google Scholar 

  8. Eslam M, Hashem AM, Leung R, Romero-Gomez M, Berg T, Dore GJ, et al. Interferon-lambda rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease. Nat Commun. 2015;6:6422.

    Article  CAS  Google Scholar 

  9. Petta S, Grimaudo S, Camma C, Cabibi D, Di Marco V, Licata G, et al. IL28B and PNPLA3 polymorphisms affect histological liver damage in patients with non-alcoholic fatty liver disease. J Hepatol. 2012;56:1356–62.

    Article  CAS  Google Scholar 

  10. Petta S, Valenti L, Tuttolomondo A, Dongiovanni P, Pipitone RM, Camma C, et al.Interferon lambda 4 rs368234815 TT>deltaG variant is associated with liver damage in patients with nonalcoholic fatty liver disease.Hepatology. 2017;66:1885–93.

    Article  CAS  Google Scholar 

  11. Uygun A, Ozturk K, Demirci H, Oztuna A, Eren F, Kozan S, et al. The association of nonalcoholic fatty liver disease with genetic polymorphisms: a multicenter study. Eur J Gastroenterol Hepatol. 2017;29:441–7.

    Article  CAS  Google Scholar 

  12. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013;45:164–71.

    Article  CAS  Google Scholar 

  13. Smith KR, Suppiah V, O’Connor K, Berg T, Weltman M, Abate ML, et al. Identification of improved IL28B SNPs and haplotypes for prediction of drug response in treatment of hepatitis C using massively parallel sequencing in a cross-sectional European cohort. Genome Med. 2011;3:57.

    Article  CAS  Google Scholar 

  14. Bochud PY, Bibert S, Kutalik Z, Patin E, Guergnon J, Nalpas B, et al.IL28B alleles associated with poor hepatitis C virus (HCV) clearance protect against inflammation and fibrosis in patients infected with non-1 HCV genotypes. Hepatology. 2012;55:384–94.

    Article  CAS  Google Scholar 

  15. Terczynska-Dyla E, Bibert S, Duong FH, Krol I, Jorgensen S, Collinet E, et al. Reduced IFNlambda4 activity is associated with improved HCV clearance and reduced expression of interferon-stimulated genes. Nat Commun. 2014;5:5699.

    Article  CAS  Google Scholar 

  16. Mohlenberg M, Terczynska-Dyla E, Thomsen KL, George J, Eslam M, Gronbaek H, et al. The role of IFN in the development of NAFLD and NASH. Cytokine. 2019;124:154519.

    Article  Google Scholar 

  17. Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 2008;4:e1000017.

    Article  Google Scholar 

  18. Ghazarian M, Revelo XS, Nøhr MK, Luck H, Zeng K, Lei H, et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci Immunol. 2017;2:eaai7616.

    Article  Google Scholar 

  19. Roh YS, Park S, Kim JW, Lim CW, Seki E, Kim B.Toll-like receptor 7-mediated type I interferon signaling prevents cholestasis- and hepatotoxin-induced liver fibrosis. Hepatology. 2014;60:237–49.

    Article  CAS  Google Scholar 

  20. Wieser V, Adolph TE, Grander C, Grabherr F, Enrich B, Moser P, et al. Adipose type I interferon signalling protects against metabolic dysfunction. Gut. 2018;67:157–65.

    Article  CAS  Google Scholar 

  21. Chang XM, Chang Y, Jia A. Effects of interferon-alpha on expression of hepatic stellate cell and transforming growth factor-beta1 and alpha-smooth muscle actin in rats with hepatic fibrosis. World J Gastroenterol. 2005;11:2634–6.

    Article  CAS  Google Scholar 

  22. Fort J, Pilette C, Veal N, Oberti F, Gallois Y, Douay O, et al. Effects of long-term administration of interferon alpha in two models of liver fibrosis in rats. J Hepatol. 1998;29:263–70.

    Article  CAS  Google Scholar 

  23. Moreno MG, Muriel P. Remission of liver fibrosis by interferon-alpha 2b. Biochemical Pharmacol. 1995;50:515–20.

    Article  CAS  Google Scholar 

  24. Souza MM, Parana R, Trepo C, Barbosa AA Jr, Oliveira I, Andrade ZA. Effect of interferon-alpha on experimental septal fibrosis of the liver - study with a new model. Mem Inst Oswaldo Cruz. 2001;96:343–8.

    Article  CAS  Google Scholar 

  25. Tasci I, Mas MR, Vural SA, Deveci S, Comert B, Alcigir G, et al. Pegylated interferon-alpha plus taurine in treatment of rat liver fibrosis. World J Gastroenterol. 2007;13:3237–44.

    Article  CAS  Google Scholar 

  26. Lykke Eriksen P, Sørensen M, Grønbæk H, Hamilton-Dutoit S, Vilstrup H, Thomsen KL. Non-alcoholic fatty liver disease causes dissociated changes in metabolic liver functions. Clin Res Hepatol Gastroenterol. 2019;43:551–60.

    Article  Google Scholar 

  27. Eriksen PL, Thomsen KL, Larsen LP, Grønbaek H, Vilstrup H, Sørensen M. Non-alcoholic steatohepatitis, but not simple steatosis, disturbs the functional homogeneity of the liver - a human galactose positron emission tomography study. Alimentary Pharmacol Ther. 2019;50:84–92.

    Article  CAS  Google Scholar 

  28. Thomsen KL, Grønbæk H, Glavind E, Hebbard L, Jessen N, Clouston A, et al. Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function. Am J Physiol Gastrointest Liver Physiol. 2014;307:G295–301.

    Article  CAS  Google Scholar 

  29. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al.Design and validation of a histological scoring system for nonalcoholic fatty liver disease.Hepatology. 2005;41:1313–21.

    Article  Google Scholar 

  30. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81.

    Article  CAS  Google Scholar 

  31. Sarasin-Filipowicz M, Wang X, Yan M, Duong FH, Poli V, Hilton DJ, et al. Alpha interferon induces long-lasting refractoriness of JAK-STAT signaling in the mouse liver through induction of USP18/UBP43. Mol Cell Biol. 2009;29:4841–51.

    Article  CAS  Google Scholar 

  32. Eslam M, McLeod D, Kelaeng KS, Mangia A, Berg T, Thabet K, et al. IFN-lambda3, not IFN-lambda4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis. Nat Genet. 2017;49:795–800.

    Article  CAS  Google Scholar 

  33. Carreres L, Jílková ZM, Vial G, Marche PN, Decaens T, Lerat H. Modeling diet-induced NAFLD and NASH in rats: a comprehensive review. Biomedicines. 2021;9:378.

    Article  CAS  Google Scholar 

  34. Cai J, Zhang XJ, Li H. The role of innate immune cells in nonalcoholic steatohepatitis. Hepatology. 2019;70:1026–37.

    Article  Google Scholar 

  35. Luci C, Bourinet M, Leclère PS, Anty R, Gual P. Chronic inflammation in non-alcoholic steatohepatitis: molecular mechanisms and therapeutic strategies. Front Endocrinol. 2020;11:597648.

    Article  Google Scholar 

  36. Targher G, Tilg H, Byrne CD. Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol Hepatol. 2021;6:578–88.

    Article  Google Scholar 

  37. Jouvin-Marche E, Macek Jílková Z, Thelu MA, Marche H, Fugier E, Van Campenhout N, et al. Lymphocytes degranulation in liver in hepatitis C virus carriers is associated with IFNL4 polymorphisms and ALT levels. J Infect Dis. 2014;209:1907–15.

    Article  CAS  Google Scholar 

  38. O’Connor KS, Read SA, Wang M, Schibeci S, Eslam M, Ong A, et al. IFNL3/4 genotype is associated with altered immune cell populations in peripheral blood in chronic hepatitis C infection. Genes Immun. 2016;17:328–34.

    Article  Google Scholar 

Download references

Funding

This study was supported by Danmarks Frie Forskningsfond (7016-00331B), Novo Nordisk Fonden (NNF19OC0055039), and Fabrikant Vilhelm Pedersen og hustrus mindelegat. The funding sources had no role in the study design, collection, analysis, and interpretation of data, writing of the paper or the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

MM, KLT, HG, and RH contributed to study design, data collection, data analysis, data interpretation. PLE and TLL contributed with patient inclusion. SJHD and MBN performed histopathological analyses. MM wrote the paper draft. MM performed the literature search, created figures and tables. The final version of this paper was reviewed and approved by all authors.

Corresponding author

Correspondence to Michelle Møhlenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Møhlenberg, M., Eriksen, P.L., Laursen, T.L. et al. The presence of interferon affects the progression of non-alcoholic fatty liver disease. Genes Immun 23, 157–165 (2022). https://doi.org/10.1038/s41435-022-00176-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-022-00176-6

This article is cited by

Search

Quick links