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Fc receptors and the diversity of antibody responses to HIV
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The development of an effective vaccine against HIV is desperately needed. The successive failures of HIV vaccine efficacy trials in
recent decades have shown the difficulty of inducing an appropriate protective immune response to fight HIV. Different correlates
of antibody parameters associated with a decreased risk of HIV-1 acquisition have been identified. However, these parameters are
difficult to reproduce and improve, possibly because they have an intricate and combined action. Here, we describe the numerous
antibody (Ab) functions associated with HIV-1 protection and report the interrelated parameters regulating their complex functions.
Indeed, besides neutralizing and Fc-mediated activity, additional factors such as Ab type, concentration and kinetics of induction,
and Fc-receptor expression and binding capacity also influence the protective effect conferred by Abs. As these parameters were
described to be associated with ethnicity, age and sex, these additional factors must be considered for the development of an
effective immune response. Therefore, future vaccine designs need to consider these multifaceted Ab functions together with the
demographic attributes of the patient populations.

Genes & Immunity (2022) 23:149–156; https://doi.org/10.1038/s41435-022-00175-7

INTRODUCTION
According to World Health Organization (WHO) data from 2020,
37.7 million people are living with HIV-1/AIDS and 68% of them
are Africans [1]. In contrast to western Europe and America,
where subtype B is predominant, subtype A is largely distributed
in Eastern Europe and Central Asia and subtype C in East Asia.
Africa shows the highest HIV-1 diversity with subtypes A and D in
eastern Africa, C in southern Africa, A, G, CRF02_AG, and
CRF06_cpx in western Africa, and B and CRF02_AG in northern
Africa [2–4]. To fight against and end the HIV-1 pandemic, an
efficient protective vaccine is needed. However, due to the high
diversity of HIV-1 subtypes, vaccines need to induce antibodies
(Abs) with broad inhibitory activity, i.e., antibodies able to inhibit
numerous HIV-1 variants. This requirement is considered as one
of the main limitations for the development of an efficient HIV
vaccine [5, 6].
Over more than three decades, several HIV-1 vaccine trials have

been conducted all over the world [7]. However, in HIV-1 vaccine
history, only the RV144 phase III trial performed in Thailand
showed a statistically significant decreased risk for HIV-1 acquisi-
tion at 42 months (31.2%) [8]. Interestingly, analysis of immune
correlates for risk showed that Abs binding to the V1V2 region of
gp120 correlated with a decreased risk for infection [9]. The IgG1
and IgG3 subclasses mediating antibody-dependent cell-mediated
cytotoxicity (ADCC) seem to play a predominant role in protection
against HIV-1 acquisition [10]. Moreover, the concentration of
plasma envelope (Env)-specific IgA Abs was found to be directly

correlated with a higher risk for HIV acquisition [10, 11]. These
correlates of risk highlight the predominant role of isotypes and
Fc-mediated functions in addition to the previously known
protective role of neutralizing antibodies (NAbs). Knowledge of
these new factors opens windows of opportunities for innovations
in inducing a broad inhibitory humoral immune response to fight
HIV and introduces new parameters to be considered, such as Fc
domain/Fc receptor (FcR) interactions [12–17].

ANTIBODIES AND THE PLEIOTROPIC FUNCTION OF THE
HUMORAL RESPONSE
Induction of HIV-specific Abs of various isotypes
The B cells of the immune system produce Abs that are classified
into five major immunoglobulin (Ig) classes or isotypes: IgM, IgG,
IgA, IgD, and IgE [18]. IgG is further divided into four subclasses
(Fig. 1A) that are diversely distributed according to ethnicity, sex
and age, with IgG1, IgG2, IgG3, and IgG4 representing 60–72%,
20–31%, 5–10%, and <4% of total IgG, respectively [19]. IgG
subclass prevalence has been reported to change over time
following the course of disease and symptoms [20]. Following HIV-
1 infection, the adaptive immune response predominantly induces
IgG1, IgG3 and IgA [21]. In the RV144 vaccine trial, high levels of
HIV-1-specific IgG3 and low Env-specific IgA correlated with a
decreased risk of HIV-1 infection [10]. The various Ab isotypes and
subclasses bind differently to Fc receptors at the surface of
immune cells, including dendritic cells and mainly macrophages
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Fig. 1 Antibodies and FcR-mediated functions. A IgG subclasses. B Fc gamma receptors (FcγRI, FcγRIIa, FcγRIIb, FcγRIIc, FcγRIIIa, FcγRIIIb),
their main function, polymorphisms, and distribution on immune cells. C FcγR binding affinities of IgG subclasses. CDC complement
dependent cytotoxicity, ADCC antibody-dependent cellular cytotoxicity, ADCP antibody-dependent cellular phagocytosis, Mo Monocyte, Mϕ
Macrophage, DC Dendritic cell, MC Mast cell, Neu Neutrophil, Bas Basophil, Eos Eosinophil, NK Natural killer cell, BC B cell, PLT Platelet.
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(Fig. 1B). As these cells are the best-in-class antigen-presenting
cells, different Ab isotypes and subclasses directly affect Ab
binding to antigen-presenting cells, modulating immune cell
activation and consequently the quality of the humoral immune
response that is induced [22]. Comprehensively interrogating the
extensive biological Ig diversity in patients may provide critical
insights that can guide the development of effective Ab-based
vaccines and therapies.

Two main antibody functions observed in HIV-infected
patients and in vaccine trials: neutralization and Fc-mediated
functions
NAbs protect cells from pathogens or infectious particles by
inhibiting any effect leading to infection via the binding of their
Fab domain to the infectious agent (Fig. 1B) [23, 24]. Studies of the
passive injection of broadly NAbs in nonhuman primate (NHP)
models demonstrate their high potential for conferring protection
against HIV acquisition [23, 25]. Considering these data, immuno-
gens aiming to induce the production of these NAbs were
developed [23, 26]. Many vaccines have been designed to induce
Abs targeting the envelope glycoproteins of the virus, mainly
gp120 or gp160 [26–28]. However, these vaccines failed to induce
broadly NAbs. Indeed, the production of broadly NAbs is
extremely difficult to induce due to the need for an extensive
maturation process [29, 30].
The success of the RV144 vaccine trial supported the develop-

ment of new vaccine designs for the induction of Abs with
additional functions, mainly Fc-mediated Ab functions [31, 32]. It
has been proposed that several Fc-mediated mechanisms,
including ADCC, antibody-dependent cellular phagocytosis
(ADCP), antibody-dependent complement deposition (ADCD),
aggregation and immune activation, participate in HIV inhibition
(Figs. 1B, 2) [14, 33–37]. In addition, viruses can be directly
opsonized by phagocytosis via Ab and FcR binding. The virus is
then destroyed, and digested peptides can be retrieved by
antigen-presenting cells for T cell activation (Fig. 2) [17, 34, 38, 39].
If the virus escapes this lysis process, opsonized virus entry may
also lead to increased infection by a process called antibody-
dependent enhancement (ADE) [40]. This ADE function should of
course be avoided [41–43]. All these different Fc-mediated
mechanisms involve the binding of the Fc domain of the Ab to

the Fc receptor present on immune cells. The Fc-mediated
functions of Abs are therefore also directly interconnected with
FcR expression at the surface of immune cells [44, 45].

MODULATING FCR EXPRESSION AT THE SURFACE OF IMMUNE
CELLS
FcRs are cell surface glycoproteins that bind to the Fc domain of
Abs. This binding varies according to the isotype and subclass of
the Ab but also according to the type of FcR (Fig. 1B, C) [44–46].
These FcRs are differentially expressed on most immune cells,
including natural killer (NK) cells, monocytes, macrophages,
eosinophils, dendritic cells, B cells and even some T cells
[17, 46]. There are three family classes of FcRs (I, II, and III), each
of which comprises a different number of proteins: FcγRI, FcγRIIa,
FcγRIIb, FcγRIIc, FcγRIIIa and FcγRIIIb (Fig. 1B) [18]. All human FcγRs
except FcγRIIB signal through an immunoreceptor tyrosine-based
activating motif (ITAM), whereas FcγRIIB delivers inhibitory signals
through an immunoreceptor tyrosine-based inhibitory motif (ITIM)
[4, 46]. The diversity of human FcγRII and III is further increased by
single nucleotide polymorphisms (SNPs) in their extracellular
domains, the most studied of which are H131R in FcγR gene
FCGR2A, 126C>T in FCGR2C, F158V in FCGR3A, and NA1/2 in
FCGR3B (Fig. 1C). FcγRIIC has an unusual structure and is
generated by an unequal crossover between FcγRIIA and FcγRIIB.
FCGR2C signals through the ITAM similarly to FCGR2A. FcγRIIC
(126C>T), rs114945036 presumably lead to an open reading frame
with an atypical FcR protein sequence.
Importantly, the different FcR polymorphisms of the host

need to be considered when analyzing FcR-mediated functions
of Abs. FcγR SNPs will impact both on the the binding to the
complementary Fc portion of the Abs and on the expression or
activation state of the cells [46] (Fig. 1B). Increasing evidence
suggests that FcγR SNPs impair receptor expression on DCs,
which in turn influences the risk for HIV infection and vaccine
efficacy [15, 16, 47]. Interestingly, a combination of polymorph-
isms may also influence FcR expression, such as the combina-
tion of rs1801274 and rs10800309 in the FcγRII coding gene
FCGR2A, which affects the expression level of FcR on immature
dendritic cells [48]. FcγRIIIA polymorphism appears to modify
NK cell activation and, as a consequence, ADCC activity [49].

Fig. 2 HIV antibody functions. The functions are dependent on different Ab domains: The Fab domain is involved in virus neutralization,
opsonization and aggregation; the Fc domain of Ab induces the activation of the complement system; dual binding of Ab via Fab and Fc
domains leads to Fc-mediated antibody function: antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity;
FcR internalization may lead to phagocytosis, antigen presentation or antibody-dependent enhancement.
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Specific polymorphisms at the FCGR2A (encoding Arg or His at
position 131) and FCGR3A (encoding Phe or Val at position 158)
gene loci have been associated with an HIV vaccine benefit [50].
The rs396991 SNP leads to an increased binding capacity of Abs for
FcγRIIIA, which is the main receptor involved in ADCC, suggesting
that the vaccine efficacy may be related to an increased efficacy of
this function. More recently, Li et al. described that a tag SNP
(rs114945036) in FCGR2C (126C>T, presumably leading to a stop
codon or an open reading frame) was significantly associated with
protection against infection with a subtype AE HIV-1 strain in the
RV144 vaccine clinical trial [51]. The direct effect of this SNP is not
well documented. Authors propose that it may lead to an
alternative splicing, bypassing the FCGR2C-Stop codon to encode
a product with an atypical FcR protein sequence, thereby modifying
FcR expression or accessibility on cells [51].
Overall, the interplay between IgG subclasses, multiple FcRs and

polymorphisms thereof contribute to the complexity of the Fc-
mediated response [15, 46]. As a consequence, numerous studies
have analyzed the association between FcR genes or their
polymorphisms and the evolution of HIV disease or vaccine
protection (Table 1) [50–55].

EFFECT OF ETHNICITY, SEX, AND AGE ON FC-MEDIATED AB
RESPONSE TO HIV
Several studies have shown that serum Ig concentrations vary
according to ethnicity, sex, and age. Total IgG and IgA levels
increase with age and reach the adult concentration at ~10 years
of age. Thereafter, the levels of serum IgG were found to be
significantly reduced with age, and the level of IgA was found to
be maintained. Total IgG and IgA concentrations are higher in
Black populations than in White populations [19, 56, 57]. A similar
result of higher total IgG levels in HIV-infected Africans than in
Caucasians and Hispanics was also found [57–60]. Notably, all
these studies comparing Ab profiles according to ethnicity were
performed in individuals living in the same country. The difference
in Ab responses in Africans living in Africa and Caucasians living in
Europe or the USA needs to be investigated to integrate the effect
of geographic origin in these studies.
In addition, age-related differences in clonal expansion with

decreased IgA levels and skew toward IgG2 were observed after
influenza vaccination [61, 62].
These results illustrate the importance of Ab classes in vaccine

studies. This difference in Ab isotypes and concentrations
according to ethnicity, age and sex may directly impact FcR
functions and influence the efficacy of Ab induction in HIV-
vaccinated individuals.
The demonstration of the role of Fc-mediated function also

brings into question the importance of FcR features. The
frequencies of SNPs of FcR genes differ significantly between
ethnic groups [63–65]. These differences may strongly modify the
association found between FcR polymorphisms and HIV-1 protec-
tion or disease outcome. In Kawasaki disease for example, the
association with the FCGR2C-ORF haplotype becomes evident
only when Asians, in whom FCGR2C-ORF is a nearly absent
haplotype, are excluded from the cohort [64].
Overall, analyzing Fc-mediated Ab functions without consider-

ing ethnicity, sex, and age is hazardous. These factors need to be
considered for genotype/phenotype association studies, as well as
for the analysis of FcR involvement in HIV vaccine trials.

FCR AND AB FUNCTIONS IN VACCINE TRIALS
During the past three decades, several HIV-1 vaccine trials have
been performed all over the world. The first vaccine trial tested the
recombinant envelope glycoprotein subunit (rgp160) in 72 adults.
This vaccine showed induction of NAbs but not Fc-mediated
Ab responses [66, 67]. The second HIV-1 trial (HIVAC-1e) usedTa
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recombinant vaccinia virus that expressed HIV-1 gp160, and its
administration resulted in no induction of neutralizing Ab or Fc-
mediated Ab responses, even though ADE was detected [68, 69].
Whether this lack of detectable Ab function was due to technical
issues needs to be further assessed. Thereafter the following
vaccine trials using envelop antigens succeeded in inducing both
neutralizing and Fc-medicated Ab responses (Table 1). Of note, the
CD4+ T cell-driven HIV immunogens used in the HVTN502 and
HVTN503 vaccine trials did not contain envelop antigens, and led
to an increased risk of infection [70–75]. FcR variants and their
potential association with a decreased risk for infection were
further investigated in three vaccine trials: Vax004, HVTN505 and
RV144 (Fig. 1B). Although the Vax004 and HVTN505 vaccine
strategies did not show efficacy, distinct FCGR polymorphisms
have been associated with either an increased or decreased risk for
HIV-1 acquisition (Table 1). For the RV144 vaccine trial conducted in
Thailand, an association between the FCGR2C rs114940536,
rs138747765, rs78603008 polymorphisms and a decreased risk
for HIV acquisition was shown [51]. While focusing on fighting the
HIV-1 pandemic in Africa, a similar strategy to that used in the
RV144 trial was initiated in the South African area [76–79]. This trial,
called HVTN702, did not reach the efficacy requirement of RV144
and was therefore stopped prematurely [80]. This failure could be
explained by the fact that Black South Africans do not possess the
FCGR2C haplotype that was associated with increased vaccine
efficacy in the RV144 trial [63]. Collectively, the differences in
FCGR2C polymorphisms in South Africa versus Thailand highlight
the need for further mechanistic investigations to define the
functional relevance of FcR polymorphisms in HIV-1 protection,
especially in the context of vaccination. Interestingly, HVTN505
conducted in the USA showed different FcγR SNPs associated with
a different hazard ratio of HIV-1 acquisition from that of RV144. In
the HVTN505 trial, patients receiving the vaccine had significantly
higher incidences of HIV acquisition than those receiving placebo
among participants carrying the FCGR2C-TATA haplotype or the
FCGR3B-AGA haplotype. Moreover, an FCGR2A SNP (rs2165088)
and two FCGR2B SNPs (rs6666965 and rs666561) influenced the
correlation of anti-gp140 antibody-dependent cellular phagocyto-
sis with HIV risk [81]. Of note, the HVTN505 and RV144 trials
differed in a number of points, i.e., canarypox prime/protein boost
in a general low-risk Thai population in RV144 versus DNA prime/
rAd5 boost in a high-risk U.S. population of men who have sex with
men in HVTN505.
These results indicate that the functional impact of a given FcγR

polymorphism on the risk for HIV-1 acquisition is highly context
specific, depending on the specific vaccine regimen but also on
other factors, such as demographics, virus quasi-species, and
genetic background [53, 81, 82].

DISCUSSION OF FUTURE ASPECTS
RV144 was the sole HIV-1 vaccine trial that showed a limited but
statistically significant decreased infection risk [8, 10, 82]. As this
protection was not associated with neutralization but with specific
Ab types and Fc-mediated function, increased efforts were made
to obtain a more in-depth characterization of the induced HIV-
specific Ab response [10, 54, 82]. Indeed, in addition to HIV-specific
Ab response and neutralizing activity, the specificity of the
recognized epitope and Fc-mediated functions were investigated
(Table 1). In addition, the FcR polymorphisms associated with
infection outcome were explored [50–52, 54, 55, 81, 82]. However,
taken individually, none of these factors could be associated with
protection. For example, attempts to associate FcR genotypes with
HIV outcome resulted in variable, sometime contradictory, results
(Table 1). These results largely suggest that multiple Ab factors,
including Ab class and subclass, structures, Fc domain interactions
with Fc receptors, FcR locus copy number and FcR polymorphisms,
may impact vaccine efficacy with synergistic or sometimes

antagonistic effects [83]. Moreover, as Ab concentrations and
FcR polymorphism frequencies vary according to ethnicities,
analysis of correlates of infection risk need to take these additional
parameters into consideration [63–65]. These results shed light on
the complexity of the humoral response that may be correlated
with a decreased risk of HIV-1 acquisition. Future vaccine
strategies need to address humoral Ab induction as a whole
challenging the different characteristics of the Abs and FcRs
required to obtain the most promising combination of humoral
responses associated with protection.
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