Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteomic analysis of Caenorhabditis elegans against Salmonella Typhi toxic proteins

Abstract

Bacterial effector molecules are crucial infectious agents that can cause pathogenesis. In the present study, the pathogenesis of toxic Salmonella enterica serovar Typhi (S. Typhi) proteins on the model host Caenorhabditis elegans was investigated by exploring the host’s regulatory proteins during infection through the quantitative proteomics approach. Extracted host proteins were analyzed using two-dimensional gel electrophoresis (2D-GE) and differentially regulated proteins were identified using MALDI TOF/TOF/MS analysis. Of the 150 regulated proteins identified, 95 were downregulated while 55 were upregulated. The interaction network of regulated proteins was predicted using the STRING tool. Most downregulated proteins were involved in muscle contraction, locomotion, energy hydrolysis, lipid synthesis, serine/threonine kinase activity, oxidoreductase activity, and protein unfolding. Upregulated proteins were involved in oxidative stress pathways. Hence, cellular stress generated by S. Typhi proteins in the model host was determined using lipid peroxidation as well as oxidant and antioxidant assays. In addition, candidate proteins identified via extract analysis were validated by western blotting, and the roles of several crucial molecules were analyzed in vivo using transgenic strains (myo-2 and col-19) and mutant (ogt-1) of C. elegans. To the best of our knowledge, this is the first study to report protein regulation in host C. elegans exposed to toxic S. Typhi proteins. It highlights the significance of p38 MAPK and JNK immune pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graph represents the survival of C. elegans during extracted protein exposure.
Fig. 2: 2D gel electrophoreses images of C. elegans proteome.
Fig. 3: Analysis of Gene Ontology categories.
Fig. 4: Interactome map using the STRING tool with a medium confidence score (0.400), revealing an interaction between identified protein players which were regulated by 50% S. Typhi toxin protein exposure in C. elegans.
Fig. 5: Functional annotations and protein enrichment score of regulated proteins.
Fig. 6: Quantitative analysis of oxidant and antioxidant proteins of C. elegans fed with E. coli OP50 and treated with S. Typhi toxin proteins and E. coli OP50 total proteins.
Fig. 7: Expression of MAP Kinase pathway proteins.
Fig. 8: Impact of toxin proteins on host fat molecules.
Fig. 9: Impact of toxin proteins on the ATP production.
Fig. 10: Impact of toxin proteins on host locomotion.
Fig. 11: An overview of proteins and pathways activated and targeted by S. Typhi toxin in C. elegans are presented in this figure.

Similar content being viewed by others

References

  1. Popham JD, Webster JM. Cadmium toxicity in the free-living nematode, Caenorhabditis elegans. Environ Res. 1979;20:183–91.

    Article  CAS  PubMed  Google Scholar 

  2. Hodgkin J, Kuwabara PE, Corneliussen B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol. 2000;10:1615–8.

    Article  CAS  PubMed  Google Scholar 

  3. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, et al. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sci. 2008;106:5–28.

    Article  CAS  Google Scholar 

  4. Hunt PR. The C. elegans model in toxicity testing. J Appl Toxicol. 2017;1:50–9.

    Article  Google Scholar 

  5. Huffman DL, Bischof LJ, Griffitts JS, Aroian RV. Pore worms: using Caenorhabditis elegans to study how bacterial toxins interact with their target host. Int J Med Microbiol. 2004;293:599–607.

    Article  CAS  PubMed  Google Scholar 

  6. Aballay A, Drenkard E, Hilbun LR, Ausubel FM. Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr Biol. 2003;13:47–52.

    Article  CAS  PubMed  Google Scholar 

  7. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2:1051–60.

    Article  CAS  PubMed  Google Scholar 

  8. Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog. 2013;9:e1003101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ray A, Rentas C, Caldwell GA, Caldwell KA. Phenazine derivatives cause proteotoxicity and stress in C. elegans. Neurosci Lett. 2015;584:23–7.

    Article  CAS  PubMed  Google Scholar 

  10. Vigneshkumar B, Pandian SK, Balamurugan K. Regulation of Caenorhabditis elegans and Pseudomonas aeruginosa machinery during interactions. Arch Microbiol. 2012;194:229–42.

    Article  CAS  PubMed  Google Scholar 

  11. Kamaladevi A, Balamurugan K. Lipopolysaccharide of Klebsiella pneumoniae attenuates immunity of Caenorhabditis elegans and evades by altering its supramolecular structure. RSC Adv. 2016;6:30070–80.

    Article  CAS  Google Scholar 

  12. JebaMercy G, Prithika U, Lavanya N, Sekar C, Balamurugan K. Changes in Caenorhabditis elegans immunity and Staphylococcal virulence factors during their interactions. Gene. 2015;558:159–72.

    Article  CAS  PubMed  Google Scholar 

  13. Kesika P, Karutha Pandian S, Balamurugan K. Analysis of Shigella flexneri-mediated infections in model organism Caenorhabditis elegans. Scand J Infect Dis. 2011;43:286–95.

    Article  CAS  PubMed  Google Scholar 

  14. Durai S, Pandian SK, Balamurugan K. Establishment of a Caenorhabditis elegans infection model for Vibrio alginolyticus. J basic Microbiol. 2011;51:243–52.

    Article  CAS  PubMed  Google Scholar 

  15. JebaMercy G, Vigneshwari L, Balamurugan KA. MAP Kinase pathway in Caenorhabditis elegans is required for defense against infection by opportunistic Proteus species. Microbes Infect. 2013;15:550–68.

    Article  CAS  PubMed  Google Scholar 

  16. Sivamaruthi BS, Balamurugan K. Physiological and immunological regulations in Caenorhabditis elegans infected with Salmonella enterica serovar Typhi. Indian J Microbiol. 2014;54:52–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kamaladevi A, Balamurugan K. Global proteomics revealed Klebsiella pneumoniae induced autophagy and oxidative stress in caenorhabditis elegans by inhibiting PI3K/AKT/mTOR pathway during infection. Front Cell Infect Microbiol. 2017;7:393.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Balasubramanian V, Sellegounder D, Suman K, Krishnaswamy B. Proteome analysis reveals translational inhibition of Caenorhabditis elegans enhances susceptibility to Pseudomonas aeruginosa PAO1 pathogenesis. J Proteom. 2016;145:141–52.

    Article  CAS  Google Scholar 

  19. Gal-Mor O, Boyle EC, Grassl GA. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol. 2014;4:5. 391

    Google Scholar 

  20. Thaver D, Zaidi AK, Critchley JA, Azmatullah A, Madni SA, Bhutta ZA. Fluoroquinolones for treating typhoid and paratyphoid fever (enteric fever). Cochrane Database of Systematic Reviews. 2008;8:CD004530.

  21. Zaki SA, Karande S. Multidrug-resistant typhoid fever: a review. J Infect Developing Ctries. 2011;5:324–37.

    Article  Google Scholar 

  22. Galan JE. Salmonella interactions with host cells: type III secretion at work. Annu Rev cell developmental Biol. 2001;17:53–86.

    Article  CAS  Google Scholar 

  23. Liu Y, Zhang Q, Hu M, Yu K, Fu J, Zhou F, et al. Proteomic analyses of intracellular Salmonella enterica serovar Typhimurium reveal extensive bacterial adaptations to infected host epithelial cells. Infect Immun. 2015;83:2897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kao CY, Salwen MJ, Hu SL, Pitter HM, Woollard JM. Diamphidia toxin, the Bushmen’s arrow poison: possible mechanism of prey-killing. Toxicon. 1989;27:1351–66.

    Article  CAS  PubMed  Google Scholar 

  25. Thorne GM, Gorbach SL. General characteristics: nomenclature of microbial toxins. Pharmacol therapeutics. 1981;13:193–203.

    Article  CAS  Google Scholar 

  26. Zhang Y, Zou X, Ding Y, Wang H, Wu X, Liang B. Comparative genomics and functional study of lipid metabolic genes in Caenorhabditis elegans. BMC genomics. 2013;14:1–3.

    Article  Google Scholar 

  27. Gavin KA, Hidaka M, Stillman B. Conserved initiator proteins in eukaryotes. Science. 1995;270:1667–71.

    Article  CAS  PubMed  Google Scholar 

  28. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schouest K, Zitova A, Spillane C, Papkovsky DB. Toxicological assessment of chemicals using Caenorhabditis elegans and optical oxygen respirometry. Environ Toxicol Chem: Int J. 2009;28:791–9.

    Article  CAS  Google Scholar 

  30. Ren H, Zhang H. Wnt signaling controls temporal identities of seam cells in Caenorhabditis elegans. Developmental Biol. 2010;345:144–55.

    Article  CAS  Google Scholar 

  31. Marsh EK, May RC. Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol. 2012;78:2075–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Ren C, Shi J, Hang X, Zhang F, Gao Y, et al. C. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress. Proteome Sci. 2010;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aballay A, Yorgey P, Ausubel FM. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol. 2000;10:1539–42.

    Article  CAS  PubMed  Google Scholar 

  34. Sem X, Rhen M. Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host. PLoS One. 2012;7:e45417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aksoy D, Şen E. Investigation of pathogenic phenotypes and virulence determinants of food-borne Salmonella enterica strains in Caenorhabditis elegans animal model. Mikrobiyoloji Bul. 2015;49:513–24.

    Article  Google Scholar 

  36. Sahu SN, Anriany Y, Grim CJ, Kim S, Chang Z, Joseph SW, et al. Identification of virulence properties in Salmonella Typhimurium DT104 using Caenorhabditis elegans. PLoS One. 2013;8:e76673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wittmann‐Liebold B, Graack HR, Pohl T. Two‐dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics. 2006;6:4688–703.

    Article  PubMed  Google Scholar 

  38. May C, Brosseron F, Chartowski P, Schumbrutzki C, Schoenebeck B, Marcus K. Instruments and methods in proteomics. Data Mining Protÿeomics. 2011;696:3–26.

    CAS  Google Scholar 

  39. Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 2001;70:603–47.

    Article  CAS  PubMed  Google Scholar 

  40. Prithika U, Deepa V, Balamurugan K. External induction of heat shock stimulates the immune response and longevity of Caenorhabditis elegans towards pathogen exposure. Innate Immun. 2016;22:466–78.

    Article  CAS  PubMed  Google Scholar 

  41. Soti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol. 2005;146:769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Powers MV, Jones K, Barillari C, Westwood I, Montfort RL, Workman P. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle. 2010;9:1542–50.

    Article  CAS  PubMed  Google Scholar 

  43. Durai S, Singh N, Kundu S, Balamurugan K. Proteomic investigation of Vibrio alginolyticus challenged Caenorhabditis elegans revealed regulation of cellular homeostasis proteins and their role in supporting innate immune system. Proteomics. 2014;14:1820–32.

    Article  CAS  PubMed  Google Scholar 

  44. JebaMercy G, Durai S, Prithika U, Marudhupandiyan S, Dasauni P, Kundu S, et al. Role of DAF-21protein in Caenorhabditis elegans immunity against Proteus mirabilis infection. J Proteom. 2016;145:81–90.

    Article  CAS  Google Scholar 

  45. Wang B, Wang H, Xiong J, Zhou Q, Wu H, Xia L, et al. A proteomic analysis provides novel insights into the stress responses of Caenorhabditis elegans towards nematicidal Cry6A Toxin from Bacillus thuringiensis. Sci Rep. 2017;71:1–4.

    Google Scholar 

  46. Mohri-Shiomi A, Garsin DA. Insulin signaling and the heat shock response modulate protein homeostasis in the Caenorhabditis elegans intestine during infection. J Biol Chem. 2008;283:194–201.

    Article  CAS  PubMed  Google Scholar 

  47. Balasubramaniam B, Vinitha T, Deepika S, JebaMercy G, VenkataKrishna LM, Balamurugan K. Analysis of Caenorhabditis elegans phosphoproteome reveals the involvement of a molecular chaperone, HSP-90 protein during Salmonella enterica Serovar Typhi infection. Int J Biol Macromol. 2019;137:620–46.

    Article  CAS  PubMed  Google Scholar 

  48. Green RA, Kao HL, Audhya A, Arur S, Mayers JR, Fridolfsson HN, et al. A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell. 2011;145:470–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lindblom TH, Dodd AK. Xenobiotic detoxification in the nematode Caenorhabditis elegans. J Exp Zool Part A: Comp Exp Biol. 2006;305:720–30.

    Article  Google Scholar 

  50. Hellerer T, Axang C, Brackmann C, Hillertz P, Pilon M, Enejder A. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci. 2007;104:14658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Srinivasan S, Sadegh L, Elle IC, Christensen AG, Faergeman NJ, Ashrafi K. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab. 2008;7:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shi X, Tarazona P, Brock TJ, Browse J, Feussner I, Watts JL. A Caenorhabditis elegans model for ether lipid biosynthesis and function. J lipid Res. 2016;57:265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 2012;1822:1442–52.

    Article  CAS  Google Scholar 

  54. Kho MF, Bellier A, Balasubramani V, Hu Y, Hsu W, Nielsen-LeRoux C, et al. The pore-forming protein Cry5B elicits the pathogenicity of Bacillus sp. against Caenorhabditis elegans. PLoS One. 2011;6:e29122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kasai KI, Hirabayashi J. Galectins: a family of animal lectins that decipher glycocodes. J Biochem. 1996;119:1–8.

    Article  CAS  PubMed  Google Scholar 

  56. Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008;10:e17.

    Article  PubMed  Google Scholar 

  57. Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol. 2011;23:383–92.

    Article  CAS  PubMed  Google Scholar 

  58. Wahlby C, Conery AL, Bray MA, Kamentsky L, Larkins-Ford J, Sokolnicki KL, et al. High-and low-throughput scoring of fat mass and body fat distribution in C. elegans. Methods. 2014;683:492–9.

    Article  Google Scholar 

  59. Fouad AD, Pu SH, Teng S, Mark JR, Fu M, Zhang K, et al. Quantitative assessment of fat levels in Caenorhabditis elegans using dark field microscopy. G3: Genes Genomes Genet. 2017;7:1811–8.

    Article  CAS  Google Scholar 

  60. Chen WW, Yi YH, Chien CH, Hsiung KC, Ma TH, Lin YC, et al. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging. Sci Rep. 2016;6:1–3.

    Google Scholar 

  61. Rogalski TM, Gilbert MM, Devenport D, Norman KR, Moerman DG. DIM-1, a novel immunoglobulin superfamily protein in Caenorhabditis elegans, is necessary for maintaining bodywall muscle integrity. Genetics. 2003;163:905–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Otey CA, Rachlin A, Moza M, Arneman D, Carpen O. The palladin/myotilin/myopalladin family of actin‐associated scaffolds. Int Rev Cytol. 2005;246:31–58.

    Article  CAS  PubMed  Google Scholar 

  63. Etheridge T, Oczypok EA, Lehmann S, Fields BD, Shephard F, Jacobson LA, et al. Calpains mediate integrin attachment complex maintenance of adult muscle in Caenorhabditis elegans. PLoS genet. 2012;8:e1002471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lecroisey C, Brouilly N, Qadota H, Mariol MC, Rochette NC, Martin E, et al. ZYX-1, the unique zyxin protein of Caenorhabditis elegans, is involved in dystrophin-dependent muscle degeneration. Mol Biol Cell. 2013;24:1232–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luo S, Schaefer AM, Dour S, Nonet ML. The conserved LIM domain-containing focal adhesion protein ZYX-1 regulates synapse maintenance in Caenorhabditis elegans. Development. 2014;141:3922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stiernagle T. Maintenance of C. elegans. Online Review of C. elegans Biology, wormbook. 1999;2:51–67.

    Google Scholar 

  67. Wingfield P. Protein precipitation using ammonium sulfate. Curr Protoc Protein Sci. 1998;13:A–3F.

    Google Scholar 

  68. Park JW, Lee SG, Song JY, Joo JS, Chung MJ, Kim SC, et al. Proteomic analysis of Helicobacter pylori cellular proteins fractionated by ammonium sulfate precipitation. Electrophoresis. 2008;13:2891–903.

    Article  Google Scholar 

  69. Park GE, Oh HN, Ahn SY. Improvement of the ammonia analysis by the phenate method in water and wastewater. Bull Korean Chem Soc. 2009;30:2032–8.

    Article  CAS  Google Scholar 

  70. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  71. Ananthi S, Santhosh RS, Nila MV, Prajna NV, Lalitha P, Dharmalingam K. Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp Eye Res. 2011;92:454–63.

    Article  CAS  PubMed  Google Scholar 

  72. Sethupathy S, Prasath KG, Ananthi S, Mahalingam S, Balan SY, Pandian SK. Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. J Proteom. 2016;145:112–26.

    Article  CAS  Google Scholar 

  73. Bianchi L, Driscoll M. Culture of embryonic C. elegans cells for electrophysiological and pharmacological analyses. WormBook. 2006;10:1551–8507.

    Google Scholar 

  74. Scherz‐Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26:1749–60.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wolff SP Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 19941; 233:182–9.

  76. Paoletti F, Mocali A. Determination of superoxide dismutase activity by purely chemical system based on NAD (P) H oOxidation. Methods Enzymol. 1990;186:209–20.

    Article  CAS  PubMed  Google Scholar 

  77. Aebi H. Catalase in vitro in method of enzymology. Methods Enzymol.1984;105:121–26.

    Article  CAS  PubMed  Google Scholar 

  78. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78.

    Article  CAS  PubMed  Google Scholar 

  79. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  CAS  PubMed  Google Scholar 

  80. Chen F, Cushion MT. Use of an ATP bioluminescent assay to evaluate viability of Pneumocystis carinii from rats. J Clin Microbiol. 1994;32:2791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT, Lawhon S, et al. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun. 2005;73:146–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu C, Yu X. ADP-ribosyltransferases and poly ADP-ribosylation. Curr Protein Pept Sci. 2015;16:491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O’Rourke B. Mitochondrial ion channels. Annu Rev Physiol. 2007;69:19–49.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mu K, Wang D, Kitts DD. Molecular mechanisms that define redox balance function in pathogen-host interactions—is there a role for dietary bioactive polyphenols? Int J Mol Sci. 2019;20:6222.

    Article  CAS  PubMed Central  Google Scholar 

  85. Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol. 2010;2:a004390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jeong DE, Lee D, Hwang SY, Lee Y, Lee JE, Seo M, et al. Mitochondrial chaperone HSP‐60 regulates anti‐bacterial immunity via p38 MAP kinase signaling. EMBO J. 2017;36:1046–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Centre, which is funded by the National Institute of Health, National Centre for Research Resources for providing the nematode strains. DAM gratefully acknowledges the University Grants Commission (UGC) of India for the financial assistance in the form of UGC-PF (F. No. 42–222/2013 (SR)). The computational facility provided by the Bioinformatics Infrastructure Facility, Alagappa University funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India (Grant No.BT/BI/25/015/2012 (BIF)) are thankfully acknowledged. We are also grateful for the Instrumentation Facility provided by the Department of Science and Technology (DST), Government of India through DST PURSE [Grant No. SR/S9Z-415 23/2010/42(G)], DST FIST [Grant No.SR-FST/LSI-087/2008], UGC through SAP-DRS1 [Grant No. F. 3–28/2011(SAP-II)] and RUSA 2.0. [F. 24–51/2014-U, Policy (TN Multi-Gen), Dept. of Education, GOI].

Author information

Authors and Affiliations

Authors

Contributions

DAM, BB and MB designed and performed the experiments and analysed the data. VK helped in proteomic analysis. KB wrote the manuscript in consultation with DAM and other authors.

Corresponding author

Correspondence to Krishnaswamy Balamurugan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

The content of the manuscript has not been published, or submitted for publication elsewhere. All authors have approved the manuscript for submission

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, D.A., Balasubramaniam, B., VenkataKrishna, L.M. et al. Proteomic analysis of Caenorhabditis elegans against Salmonella Typhi toxic proteins. Genes Immun 22, 75–92 (2021). https://doi.org/10.1038/s41435-021-00132-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-021-00132-w

Search

Quick links