Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

USP15: a review of its implication in immune and inflammatory processes and tumor progression

Abstract

The covalent post-translational modification of proteins by ubiquitination not only influences protein stability and half-life, but also several aspects of protein function including enzymatic activity, sub-cellular localization, and interactions with binding partners. Protein ubiquitination status is determined by the action of large families of ubiquitin ligases and deubiquitinases, whose combined activities regulate many physiological and cellular pathways. The Ubiquitin Specific Protease (USP) family is one of 8 subfamilies of deubiquitinating enzymes composed of more than 50 members. Recent studies have shown that USP15 plays a critical role in regulating many aspects of immune and inflammatory function of leukocytes in response to a broad range of infectious and autoimmune insults and following tissue damage. USP15 regulated pathways reviewed herein include TLR signaling, RIG-I signaling, NF-kB, and IRF3/IRF7-dependent transcription for production of pro-inflammatory cytokines and type I interferons. In addition, USP15 has been found to regulate pathways implicated in tumor onset and progression such as p53, and TGF-β signaling, but also influences the leukocytes-determined immune and inflammatory microenvironment of tumors to affect progression and outcome. Hereby reviewed are recent studies of USP15 in model cell lines in vitro, and in mutant mice in vivo with reference to available human clinical datasets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Catalytic core crystal structure and reaction mechanism of Ubiquitin Specific Proteases.
Fig. 2: Domain architecture of USP15.

References

  1. 1.

    Kaiser P, Huang L. Global approaches to understanding ubiquitination. Genome Biol. 2005;6:233.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Wilkinson KD, Audhya TK. Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly. J Biol Chem. 1981;256:9235–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Brinkmann K, Schell M, Hoppe T, Kashkar H. Regulation of the DNA damage response by ubiquitin conjugation. Front Genet. 2015;6:98.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Shembade N, Harhaj EW. Elucidating dynamic protein-protein interactions and ubiquitination in NF-kappaB signaling pathways. Methods Mol Biol. 2015;1280:283–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell. 2009;33:275–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem. 1983;258:8206–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Ciechanover A, Elias S, Heller H, Hershko A. “Covalent affinity” purification of ubiquitin-activating enzyme. J Biol Chem. 1982;257:2537–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Bernassola F, Karin M, Ciechanover A, Melino G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell. 2008;14:10–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci. 2012;125:531–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. 2003;21:921–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Ohtake F, Tsuchiya H, Saeki Y, Tanaka K. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl Acad Sci USA. 2018;115:E1401–E1408.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Rieser E, Cordier SM, Walczak H. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci. 2013;38:94–102.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 2009;137:133–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Passmore LA, Barford D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J. 2004;379:513–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wang G, Gao Y, Li L, Jin G, Cai Z, Chao JI, et al. K63-linked ubiquitination in kinase activation and cancer. Front Oncol. 2012;2:5.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells. 2014;3:1027–88.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Lee BL, Singh A, Mark Glover JN, Hendzel MJ, Spyracopoulos L. Molecular basis for K63-linked ubiquitination processes in double-strand DNA break repair: a focus on kinetics and dynamics. J Mol Biol. 2017;429:3409–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Carpenter S, O’Neill LA. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J. 2009;422:1–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Lopez-Castejon G, Edelmann MJ. Deubiquitinases: novel therapeutic targets in immune surveillance? Mediators Inflamm. 2016;2016:3481371.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Friend SF, Deason-Towne F, Peterson LK, Berger AJ, Dragone LL. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications. Am J Clin Exp Immunol. 2014;3:107–23.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pinto-Fernandez A, Davis S, Schofield AB, Scott HC, Zhang P, Salah E, et al. Comprehensive landscape of active deubiquitinating enzymes profiled by advanced chemoproteomics. Front Chem. 2019;7:592.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10:550–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell. 2005;123:773–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, et al. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell. 2016;63:146–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res. 2012;110:174–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Hewings DS, Heideker J, Ma TP, AhYoung AP, El Oualid F, Amore A, et al. Reactive-site-centric chemoproteomics identifies a distinct class of deubiquitinase enzymes. Nat Commun. 2018;9:1162.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Haahr P, Borgermann N, Guo X, Typas D, Achuthankutty D, Hoffmann S, et al. ZUFSP Deubiquitylates K63-Linked Polyubiquitin Chains to Promote Genome Stability. Mol Cell. 2018;70:165–74 e6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Ambroggio XI, Rees DC, Deshaies RJ. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. 2004;2:E2.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Tran HJ, Allen MD, Lowe J, Bycroft M. Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry. 2003;42:11460–5.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004;1695:189–207.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Wilkinson KD, Tashayev VL, O’Connor LB, Larsen CN, Kasperek E, Pickart CM. Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry. 1995;34:14535–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 2001;20:5187–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature. 2002;419:403–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Grou CP, Pinto MP, Mendes AV, Domingues P, Azevedo JE. The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Sci Rep. 2015;5:12836.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Pfoh R, Lacdao IK, Saridakis V. Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr Relat Cancer. 2015;22:T35–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Hu M, Li P, Li M, Li W, Yao T, Wu JW, et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 2002;111:1041–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Clerici M, Luna-Vargas MP, Faesen AC, Sixma TK. The DUSP-Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nat Commun. 2014;5:5399.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Renatus M, Parrado SG, D’Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, et al. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure. 2006;14:1293–302.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Hu M, Li P, Song L, Jeffrey PD, Chenova TA, Wilkinson KD, et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 2005;24:3747–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Tencer AH, Liang Q, Zhuang Z. Divergence in ubiquitin interaction and catalysis among the ubiquitin-specific protease family deubiquitinating enzymes. Biochemistry. 2016;55:4708–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Bonacci T, Emanuele MJ. Dissenting degradation: deubiquitinases in cell cycle and cancer. Semin Cancer Biol. 2020;67:145–58.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Das S, Ramakrishna S, Kim KS. Critical roles of deubiquitinating enzymes in the nervous system and neurodegenerative disorders. Mol Cells. 2020;43:203–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Csizmadia T, Low P. The role of deubiquitinating enzymes in the various forms of autophagy. Int J Mol Sci. 2020;21:4196.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  46. 46.

    Clemente V, D’Arcy P, Bazzaro M. Deubiquitinating enzymes in coronaviruses and possible therapeutic opportunities for COVID-19. Int J Mol Sci. 2020;21:3492.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  47. 47.

    Kim SY, Baek KH. TGF-beta signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci. 2019;76:653–65.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, et al. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 2016;6:62.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Chou CK, Chang YT, Korinek M, Chen YT, Yang YT, Leu S, et al. The regulations of deubiquitinase USP15 and its pathophysiological mechanisms in diseases. Int J Mol Sci. 2017;18:483.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  50. 50.

    Zou Q, Jin J, Hu H, Li HS, Romano S, Xiao Y, et al. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat Immunol. 2014;15:562–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Huang X, Langelotz C, Hetfeld-Pechoc BK, Schwenk W, Dubiel W. The COP9 signalosome mediates beta-catenin degradation by deneddylation and blocks adenomatous polyposis coli destruction via USP15. J Mol Biol. 2009;391:691–702.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Hayes SD, Liu H, MacDonald E, Sanderson CM, Coulson JM, Clague MJ, et al. Direct and indirect control of mitogen-activated protein kinase pathway-associated components, BRAP/IMP E3 ubiquitin ligase and CRAF/RAF1 kinase, by the deubiquitylating enzyme USP15. J Biol Chem. 2012;287:43007–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Das T, Park JK, Park J, Kim E, Rape M, Kim EE, et al. USP15 regulates dynamic protein-protein interactions of the spliceosome through deubiquitination of PRP31. Nucleic Acids Res. 2017;45:4866–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Fielding AB, Concannon M, Darling S, Rusilowicz-Jones EV, Sacco JJ, Prior IA, et al. The deubiquitylase USP15 regulates topoisomerase II alpha to maintain genome integrity. Oncogene. 2018;37:2326–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138:389–403.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Lu Y, Qiu Y, Chen P, Chang H, Guo L, Zhang F, et al. ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection. Nat Microbiol. 2019;4:2331–46.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Zhou Q, Cheng C, Wei Y, Yang J, Zhou W, Song Q, et al. USP15 potentiates NF-kappaB activation by differentially stabilizing TAB2 and TAB3. FEBS J. 2020;287:3165–83.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Schweitzer K, Bozko PM, Dubiel W, Naumann M. CSN controls NF-kappaB by deubiquitinylation of IkappaBalpha. EMBO J. 2007;26:1532–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Zou Q, Jin J, Xiao Y, Zhou X, Hu H, Cheng X, et al. T cell intrinsic USP15 deficiency promotes excessive IFN-gamma production and an immunosuppressive tumor microenvironment in MCA-induced fibrosarcoma. Cell Rep. 2015;13:2470–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Torre S, Polyak MJ, Langlais D, Fodil N, Kennedy JM, Radovanovic I, et al. USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nat Immunol. 2017;18:54–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Zhang H, Wang D, Zhong H, Luo R, Shang M, Liu D, et al. Ubiquitin-specific protease 15 negatively regulates virus-induced type I interferon signaling via catalytically-dependent and -independent mechanisms. Sci Rep. 2015;5:11220.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Pauli EK, Chan YK, Davis ME, Gableske S, Wang MK, Feister KF, et al. The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25. Sci Signal. 2014;7:ra3.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Chiang C, Pauli EK, Biryukov J, Feister KF, Meng M, White EA, et al. The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling. J Virol. 2018;92:e01737–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, et al. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol. 2011;13:1368–75.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E, et al. USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med. 2012;18:429–35.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    de Jong RN, Ab E, Diercks T, Truffault V, Daniels M, Kaptein R, et al. Solution structure of the human ubiquitin-specific protease 15 DUSP domain. J Biol Chem. 2006;281:5026–31.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Harper S, Besong TM, Emsley J, Scott DJ, Dreveny I. Structure of the USP15 N-terminal domains: a beta-hairpin mediates close association between the DUSP and UBL domains. Biochemistry. 2011;50:7995–8004.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Clague MJ, Coulson JM, Urbe S. Cellular functions of the DUBs. J Cell Sci. 2012;125:277–86.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Faesen AC, Luna-Vargas MP, Sixma TK. The role of UBL domains in ubiquitin-specific proteases. Biochem Soc Trans. 2012;40:539–45.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Luna-Vargas MP, Faesen AC, van Dijk WJ, Rape M, Fish A, Sixma TK. Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain. EMBO Rep. 2011;12:365–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Ward SJ, Gratton HE, Indrayudha P, Michavila C, Mukhopadhyay R, Maurer SK, et al. The structure of the deubiquitinase USP15 reveals a misaligned catalytic triad and an open ubiquitin-binding channel. J Biol Chem. 2018;293:17362–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Hetfeld BK, Helfrich A, Kapelari B, Scheel H, Hofmann K, Guterman A, et al. The zinc finger of the CSN-associated deubiquitinating enzyme USP15 is essential to rescue the E3 ligase Rbx1. Curr Biol. 2005;15:1217–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Zhang Q, Harding R, Hou F, Dong A, Walker JR, Bteich J, et al. Structural basis of the recruitment of ubiquitin-specific protease USP15 by spliceosome recycling factor SART3. J Biol Chem. 2016;291:17283–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Zhao B, Velasco K, Sompallae R, Pfirrmann T, Masucci MG, Lindsten K. The ubiquitin specific protease-4 (USP4) interacts with the S9/Rpn6 subunit of the proteasome. Biochem Biophys Res Commun. 2012;427:490–6.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, et al. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev. 2010;24:1434–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Vlasschaert C, Xia X, Coulombe J, Gray DA. Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol Biol. 2015;15:230.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Baker RT, Wang XW, Woollatt E, White JA, Sutherland GR. Identification, functional characterization, and chromosomal localization of USP15, a novel human ubiquitin-specific protease related to the UNP oncoprotein, and a systematic nomenclature for human ubiquitin-specific proteases. Genomics. 1999;59:264–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Angelats C, Wang XW, Jermiin LS, Copeland NG, Jenkins NA, Baker RT. Isolation and characterization of the mouse ubiquitin-specific protease Usp15. Mamm Genome. 2003;14:31–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Park KC, Choi EJ, Min SW, Chung SS, Kim H, Suzuki T, et al. Tissue-specificity, functional characterization and subcellular localization of a rat ubiquitin-specific processing protease, UBP109, whose mRNA expression is developmentally regulated. Biochem J. 2000;349:443–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol. 2018;9:2379.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82.

    Marongiu L, Gornati L, Artuso I, Zanoni I, Granucci F. Below the surface: the inner lives of TLR4 and TLR9. J Leukoc Biol. 2019;106:147–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol. 2020;20:537–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Choudhury NR, Heikel G, Michlewski G. TRIM25 and its emerging RNA-binding roles in antiviral defense. Wiley Interdiscip Rev RNA. 2020;11:e1588.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Huang L, Liu H, Zhang K, Meng Q, Hu L, Zhang Y, et al. Ubiquitin-conjugating enzyme 2S enhances viral replication by inhibiting type I IFN production through recruiting USP15 to deubiquitinate TBK1. Cell Rep. 2020;32:108044.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Wang L, Zhao W, Zhang M, Wang P, Zhao K, Zhao X, et al. USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I. J Virol. 2013;87:4507–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 2009;227:75–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Yaginuma Y, Yoshimoto M, Tokuda A. USP15 inhibits HPV16 E6 degradation and catalytically inactive USP15 has reduced inhibitory activity. Acta Virol. 2018;62:147–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer. Trends Cancer. 2017;3:56–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Batlle E, Massague J. Transforming growth factor-beta signaling in immunity and cancer. Immunity. 2019;50:924–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Niederkorn M, Hueneman K, Choi K, Varney ME, Romano L, Pujato MA, et al. TIFAB regulates USP15-mediated p53 signaling during stressed and malignant hematopoiesis. Cell Rep. 2020;30:2776–90 e6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Iyengar PV, Jaynes P, Rodon L, Lama D, Law KP, Lim YP, et al. USP15 regulates SMURF2 kinetics through C-lobe mediated deubiquitination. Sci Rep. 2015;5:14733.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Liu WT, Huang KY, Lu MC, Huang HL, Chen CY, Cheng YL, et al. TGF-beta upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene. 2017;36:2715–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Jiang B, Zhou L, Lu J, Wang Y, Liu C, Liang Z, et al. Clinicopathological and prognostic significance of ubiquitin-specific peptidase 15 and its relationship with transforming growth factor-beta receptors in patients with pancreatic ductal adenocarcinoma. J Gastroenterol Hepatol. 2020;36:507–15.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  95. 95.

    Al-Salihi MA, Herhaus L, Macartney T, Sapkota GP. USP11 augments TGFbeta signalling by deubiquitylating ALK5. Open Biol. 2012;2:120063.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nat Cell Biol. 2012;14:717–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Oikonomaki M, Bady P, Hegi ME. Ubiquitin specific peptidase 15 (USP15) suppresses glioblastoma cell growth via stabilization of HECTD1 E3 ligase attenuating WNT pathway activity. Oncotarget. 2017;8:110490–502.

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Chen LL, Smith MD, Lv L, Nakagawa T, Li Z, Sun SC, et al. USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2. Sci Adv. 2020;6:eabc9730.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    van den Berk P, Lancini C, Company C, Serresi M, Sanchez-Bailon MP, Hulsman D, et al. USP15 deubiquitinase safeguards hematopoiesis and genome integrity in hematopoietic stem cells and leukemia cells. Cell Rep. 2020;33:108533.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, Koentjoro B, et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet. 2014;23:5227–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496:372–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Ge P, Dawson VL. Dawson TMPINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol Neurodegener. 2020;15:20.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. Elife. 2018;7:e35878.

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Minter MR, Moore Z, Zhang M, Brody KM, Jones NC, Shultz SR, et al. Deletion of the type-1 interferon receptor in APPSWE/PS1DeltaE9 mice preserves cognitive function and alters glial phenotype. Acta Neuropathol Commun. 2016;4:72.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Roy ER, Wang B, Wan YW, Chiu G, Cole A, Yin Z, et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Invest. 2020;130:1912–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Main BS, Zhang M, Brody KM, Ayton S, Frugier T, Steer D, et al. Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson’s disease. Glia. 2016;64:1590–604.

    PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Abdullah A, Zhang M, Frugier T, Bedoui S, Taylor JM, Crack PJ. STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. J Neuroinflammation. 2018;15:323.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Karve IP, Zhang M, Habgood M, Frugier T, Brody KM, Sashindranath M, et al. Ablation of Type-1 IFN Signaling in Hematopoietic Cells Confers Protection Following Traumatic Brain Injury. eNeuro. 2016;3:ENEURO.0128–15.2016.

    Article  Google Scholar 

  109. 109.

    Teyra J, Singer AU, Schmitges FW, Jaynes P, Kit Leng Lui S, Polyak MJ, et al. Structural and functional characterization of ubiquitin variant inhibitors of USP15. Structure. 2019;27:590–605 e5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Burkhart RA, Peng Y, Norris ZA, Tholey RM, Talbott VA, Liang Q, et al. Mitoxantrone targets human ubiquitin-specific peptidase 11 (USP11) and is a potent inhibitor of pancreatic cancer cell survival. Mol Cancer Res. 2013;11:901–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Gavory G, O’Dowd CR, Helm MD, Flasz J, Arkoudis E, Dossang A, et al. Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat Chem Biol. 2018;14:118–25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Anderson AC. The process of structure-based drug design. Chem Biol. 2003;10:787–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Turnbull AP, Ioannidis S, Krajewski WW, Pinto-Fernandez A, Heride C, Martin ACL, et al. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature. 2017;550:481–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Lamberto I, Liu X, Seo HS, Schauer NJ, Iacob RE, Hu W, et al. Structure-guided development of a potent and selective non-covalent active-site inhibitor of USP7. Cell Chem Biol. 2017;24:1490–1500 e11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This work was supported by research award to P.G. from the Consortium Quebecois de la Recherche sur le Medicament, the Healthy Brains for Healthy Lives program at McGill University, Brain Canada, and Corbin Therapeutics, as well as a foundation research grant to P.G. from the Canadian Institutes of Health Research and from the Canadian Institute for Advanced Research (Human and the Microbiome Program). P.G. receives salary support from a Distinguished James McGill Professorship Award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philippe Gros.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Georges, A., Gros, P. & Fodil, N. USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun (2021). https://doi.org/10.1038/s41435-021-00125-9

Download citation

Search

Quick links