Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epithelial sensing of microbiota-derived signals

Abstract

The gastrointestinal tract harbors trillions of microbial species, collectively termed the microbiota, which establish a symbiotic relationship with the host. Decades of research have emphasized the necessity of microbial signals in the development, maturation, and function of host physiology. However, changes in the composition or containment of the microbiota have been linked to the development of several chronic inflammatory diseases, including inflammatory bowel diseases. Intestinal epithelial cells (IECs) are in constant contact with the microbiota and are critical for maintaining intestinal homeostasis. Signals from the microbiota are directly sensed by IECs and influence intestinal health by calibrating immune cell responses and fortifying intestinal barrier function. IECs detect commensal microbes through engagement of common pattern recognition receptors or by sensing the production of microbial-derived metabolites. Deficiencies in these microbial-detecting pathways in IECs leads to impaired epithelial barrier function and altered intestinal homeostasis. This Review aims to highlight the pathways by which IECs sense microbiota-derived signals and the necessity of these detection pathways in maintaining epithelial barrier integrity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Microbial surveillance pathways in intestinal epithelial cells.

References

  1. 1.

    Van Der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. 2.

    Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551:333–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Parikh K, Antanaviciute A, Fawkner-Corbett D, Jagielowicz M, Aulicino A, Lagerholm C, et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. 2019;567:49–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19:59–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Pandey S, Kawai T, Akira S. Microbial sensing by toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2015;7:a016246.

  8. 8.

    Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14:668–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, et al. Deficient host-bacteria interactions in inflammatory bowel disease? the toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53:987–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Gewirtz AT, Vijay-Kumar M, Brant SR, Duerr RH, Nicolae DL, Cho JH. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn’s disease. Am J Physiol—Gastrointest Liver Physiol. 2006;290:1157–63.

    Article  CAS  Google Scholar 

  11. 11.

    Pierik M, Joossens S, Van Steen K, Van Schuerbeek N, Vlietinck R, Rutgeerts P, et al. Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis. 2006;12:1–8. p.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Török HP, Glas J, Endres I, Tonenchi L, Teshome MY, Wetzke M, et al. Epistasis between toll-like receptor-9 polymorphisms and variants in NOD2 and IL23R modulates susceptibility to crohn’s disease. Am J Gastroenterol. 2009;104:1723–33.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    Rakoff-Nahoum S, Pglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of comensal microflora by toll-like receptors in required for intestinal homeostasis. Cell. 2004;118:229–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Rhee SH, Im E, Riegler M, Kokkotou E, O’Brien M, Pothoulakis C. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagenllin in colonic inflammation. Proc Natl Acad Sci USA. 2005;102:13610–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Ii WAR, Sakamoto K, Leifer CA. TLR9 is important for protection against intestinal damage and for intestinal repair. Sci Rep. 2012;2:1–9.

    Article  CAS  Google Scholar 

  16. 16.

    Cario E, Gerken G, Podolsky DK. Toll-Like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007;132:1359–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Price AE, Shamardani K, Lugo KA, Deguine J, Roberts AW, Lee BL, et al. A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity. 2018;49:1–16.

    Article  CAS  Google Scholar 

  19. 19.

    Yu S, Gao N. Compartmentalizing intestinal epithelial cell toll-like receptors for immune surveillance. Cell Mol Life Sci. 2015;72:3343–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol. 2001;167:1882–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Schlee M, Wehkamp J, Altenhoefer A, Oelschlaeger TA, Stange EF, Fellermann K. Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun. 2007;75:2399–407. p.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Lotz M, König T, Ménard S, Gütle D, Bogdan C, Hornef MW. Cytokine-mediated control of lipopolysaccharide-induced activation of small intestinal epithelial cells. Immunology 2007;122:306–15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Vora P, Youdim A, Thomas LS, Fukata M, Tesfay SY, Lukasek K, et al. β-Defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol. 2004;173:5398–405.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science (80-). 2006;313:1126–30.

    CAS  Article  Google Scholar 

  25. 25.

    Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Immunity. 2015;42:28–39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003;4:269–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Rumio C, Sommariva M, Sfondrini L, Palazzo M, Morelli D, Viganò L, et al. Induction of Paneth cell degranulation by orally administered Toll-like receptor ligands. J Cell Physiol. 2012;227:1107–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Omagari D, Takenouchi-Ohkubo N, Endo S, Ishigami T, Sawada A, Moro I, et al. Nuclear factor kappa B plays a pivotal role in polyinosinic-polycytidylic acid-induced expression of human β-defensin 2 in intestinal epithelial cells. Clin Exp Immunol. 2011;165:85–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J Exp Med. 2007;204:1891–900.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA. 2008;105:20858–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. (80-) 2007;317:124–7.

    CAS  Article  Google Scholar 

  32. 32.

    Gong J, Xu J, Zhu W, Gao X, Li N, Li J. Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clin Immunol. 2010;136:245–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Bhinder G, Stahl M, Sham HP, Crowley SM, Morampudi V, Dalwadi U, et al. Intestinal epithelium-specific MyD88 signaling impacts host susceptibility to infectious colitis by promoting protective goblet cell and antimicrobial responses. Infect Immun. 2014;82:3753–63.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA, et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 2012;5:501–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Palazzo M, Balsari A, Rossini A, Selleri S, Calcaterra C, Gariboldi S, et al. Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. J Immunol. 2007;178:4296–303.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;11:215–215.

    Article  CAS  Google Scholar 

  37. 37.

    Grondin JA, Kwon YH, Far PM, Haq S, Khan WI. Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies. Front Immunol. 2020;11:1–19.

    Article  CAS  Google Scholar 

  38. 38.

    Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 2018;39:677–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Hugot J, Chamaillard M, Zouali H, Lesage S, Cezard J, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshiftmutation in xyhP associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Chen GY, Shaw MH, Redondo G, Nunez G, Núñez G. Innate immune receptor nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 2008;68:10060–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Watanabe T, Asano N, Murray PJ, Ozato K, Tailor P, Fuss IJ, et al. Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Investig. 2008;118:545–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Barreau F, Meinzer U, Chareyre F, Berrebi D, Nilwas-Kawakita M, Dussailliant M, et al. CARD15/NOD2 is required for Peyer’ s patches homeostasis in mice. PLoS ONE. 2007;2:e523.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Natividad JMM, Petit V, Huang X, De Palma G, Jury J, Sanz Y, et al. Commensal and probiotic bacteria influence intestinal barrier function and susceptibility to colitis in Nod1−/−;Nod2−/− Mice. Inflamm Bowel Dis. 2012;18:1434–46.

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Couturier-maillard A, Couturier-maillard A, Secher T, Rehman A, Normand S, De Archangelis A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123:700–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Petnicki-Ocwieja T, Hrncir T, Liu Y, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, et al. Nod2 is required for the regulation of commensal microbiota in the intestine: commentary. PNAS. 2009;166:15813–8.

    Article  Google Scholar 

  48. 48.

    Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science (80-) 2005;307:731–4.

    CAS  Article  Google Scholar 

  49. 49.

    Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol. 2012;3:1–13.

    Article  Google Scholar 

  50. 50.

    Correa RG, Milutinovic S, Reed JC. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases. Biosci Rep. 2012;32:597–608.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Kim YG, Kamada N, Shaw MH, Warner N, Chen GY, Franchi L, et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity. 2011;34:769–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Parlato M, Yeretssian G. NOD-like receptors in intestinal homeostasis and epithelial tissue repair. Int J Mol Sci. 2014;15:9594–627.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Fernandez EM, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut. 2011;60:1050–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Guo H, Gibson SA, Ting JPY. Gut microbiota, NLR proteins, and intestinal homeostasis. J Exp Med. 2020;217:1–13.

    Google Scholar 

  55. 55.

    Villani A-C, Lemire M, Fortin G, Louis E, Silverberg MS, Collette C, et al. Common variants in the NLRP3 region contribute to Crohn’ s disease susceptibility. Nat Genet. 2009;41:71–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32:379–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Hirota SA, Ng J, Lueng A, Khajah M, Parhar K, Li Y, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 2011;17:1359–72.

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Yao X, Zhang C, Xing Y, Xue G, Zhang Q, Pan F, et al. Remodelling of the gut microbiota by hyperactive homeostasis. Nat Commun. 2017;8:1896.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Booshehri LM, Hoffman HM. CAPS and NLRP3. J Clin Immunol. 2019;39:277–86.

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Menu P, Vince J. The NLRP3 inflammasome in health and disease: the good, the bad, and the ugly. Clin Exp Immunol. 2011;166:1–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Chen GY, Liu M, Wang F, Bertin J, Núñez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011;186:7187–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Normand S, Delanoye-crespin A, Bressenot A, Huot L, Grandjean T. Nod-like receptor pyrin domain-containing protein colorectal carcinogenesis upon injury. PNAS. 2011;108:9601–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Wlodarska M, Thaiss CA, Nowarski R, Henao-mejia J, Zhang J, Brown EM, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156:1045–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF- k B signaling. Immunity. 2012;36:742–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y, Doho GH, et al. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol. 2012;5:288–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106:3698–703.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Claus SP, Tsang TM, Wang Y, Cloarec O, Skordi E, Martin FP, et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol. 2008;4:1–14.

    Article  CAS  Google Scholar 

  69. 69.

    Yap IKS, Li JV, Saric J, Martin FP, Davies H, Wang Y, et al. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-lnduced gut microbiota modification in the mouse. J Proteome Res. 2008;7:3718–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Swann JR, Tuohy KM, Lindfors P, Brown DT, Gibson GR, Wilson ID, et al. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res. 2011;10:3590–603.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Lavelle A, Sokoi H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17:223–37.

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Kaiko GE, Ryu SH, Koues OI, Pearce EL, Oltz EM, Stappenbeck TS. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165:1708–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6:546–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Harig J, Soergel K, Komorowski R, Wood C. Treatment of diversion colitis with short-chain fatty acid irrigation. N Engl J Med. 1987;320:23–8.

    Article  Google Scholar 

  78. 78.

    Kanauchi O, Suga T, Tochihara M, Hibi T, Naganuma M, Homma T, et al. Treatment of ulcerative colitis by feeding with germinated barley foodstuff: First report of a multicenter open control trial. J Gastroenterol. 2002;37:67–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Breuer RI, Buto SK, Christ ML, Bean J, Vernia P, Paoluzi P, et al. Rectal irrigation with short-chain fatty acids for distal ulcerative colitis—preliminary report. Dig Dis Sci. 1991;36:185–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Scheppach W, Bartram HP, Richter F, Müller JG, Greinwald K, Tauschel HD, et al. Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. Dig Dis Sci. 1996;41:2254–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Di YU, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun.2015;6:6734.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Miao W, Wu X, Wang K, Wang W, Wang Y, Li Z, et al. Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK MLC2 pathway and phosphorylation of PKCβ2. Int J Mol Sci. 2016;17:1–12.

    Google Scholar 

  84. 84.

    Peng L, Li Z, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in CaCo2 cell monolayer. J Nutr. 2009;139:1619–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Valenzano MC, Diguilio K, Mercado J, Teter M, To J, Wertheimer J, et al. Remodeling of tight junctions and enhancement of barrier integrity of the CACO-2 intestinal epithelial cell layer by micronutrients. PLoS ONE. 2015;10:e0133926.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86.

    Zheng L, Kelly CJ, Battista KD, Lanis JM, Alexeev EE, Wang RX, et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J Im. 2017;199:2976–84.

    CAS  Google Scholar 

  87. 87.

    Wang H, Wang P, Wang X, Wan Y, Liu Y. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein claudin-1 transcription. Dig Dis Sci. 2012;57:3126–35.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Zhao Y, Chen F, Wu W, Sun M, Bilotta AJ, Yao S. et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018;11:752–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Willemsen LEM, Koetsier MA, Van Deventer SJH, Van Tol EAF. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut. 2003;52:1442–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Gaudier E, Jarry A, Blottière HM, De Coppet P, Buisine MP, Aubert JP, et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol—Gastrointest Liver Physiol. 2004;287(6 50-6):1168–74.

    Article  CAS  Google Scholar 

  91. 91.

    Wrzosek L, Miquel S, Noordine M-L, Bouet S, Chevalier-Curt MJ, Robert V, et al. Bacteroides Thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. Gastroenterology. 2013;144:S–59.

    Google Scholar 

  92. 92.

    Park J, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S. et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: role of short-chain fatty acids. PLoS ONE.2016;11:1–22.

    Google Scholar 

  93. 93.

    Wu Sen, Hashimoto-Hill S, Woo V, Eshleman EM, Whitt J, Engleman L, et al. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature. 2020;586:108–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69:2826–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Venegas DP, Fuente MKDe, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs) -mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277.

    CAS  Article  Google Scholar 

  96. 96.

    Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, et al. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol. 2006;176:5015–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Alenghat T, Osborne LC, Saenz SA, Kobuley D, Ziegler CG, Mullican SE, et al. Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature. 2013;504:153–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Turgeon N, Blais M, Gagné JM, Tardif V, Boudreau F, Perreault N, et al. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS ONE. 2013;8:1–17.

    Article  CAS  Google Scholar 

  99. 99.

    Zimberlin CD, Lancini C, Sno R, Rosekrans SL, Mclean CM, Vlaming H, et al. HDAC1 and HDAC2 collectively regulate intestinal stem cell homeostasis. FASEB J. 2015;29:2070–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Gonneaud A, Turgeon N, Fran C, Boudreau SOIS, Perreault N, Rivard N, et al. Distinct roles for intestinal epithelial cell-specific Hdac1 and Hdac2 in the regulation of murine intestinal homeostasis. J Cell Physiol. 2015;231:436–48.

    Article  CAS  Google Scholar 

  101. 101.

    Lorenzo-Zúñiga V, Bartolí R, Planas R, Hofmann AF, Viñado B, Hagey LR, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology. 2003;37:551–7.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  102. 102.

    Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103:3920–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    D’Aldebert E, Biyeyeme Bi Mve MJ, Mergey M, Wendum D, Firrincieli D, Coilly A, et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology. 2009;136:1435–43.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  104. 104.

    Termén S, Tollin M, Rodriguez E, Sveinsdóttir SH, Jóhannesson B, Cederlund A, et al. PU.1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol Immunol. 2008;45:3947–55.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  105. 105.

    Gadaleta RM, Van Erpecum KJ, Oldenburg B, Willemsen ECL, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60:463–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183:6251–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Ruiz L, Margolles A, Sánchez B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol. 2013;4:1–8.

    Article  Google Scholar 

  108. 108.

    Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA. 2014;111:7421–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, et al. Connecting dysbiosis, bile-acid dysmetabolism and Gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity review-article. Mucosal Immunol. 2018;11:1024–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Stockinger B, Meglio PDI, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014;32:403–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA. 2010;107:228–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Landis J, Alexeev E, Curtis V, Kitzenberg D, Kao D, Battista K, et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL10 receptor expression on intestinal epithelia. Mucosal Immunol. 2017;10:1133–44.

    Article  CAS  Google Scholar 

  117. 117.

    Chinen I, Nakahama T, Kimura A, Nguyen NT, Takemori H, Kumagai A, et al. The aryl hydrocarbon receptor/microRNA-212/132 axis in T cells regulates IL-10 production to maintain intestinal homeostasis. Int Immunol. 2015;27:405–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Wang J, Wang P, Tian H, Tian F, Zhang Y, Zhang L, et al. Aryl hydrocarbon receptor/IL-22/Stat3 signaling pathway is involved in the modulation of intestinal mucosa antimicrobial molecules by commensal microbiota in mice. Innate Immun. 2018;24:297–306.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141:237–248. e1

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22:598–605.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Schneider C, O’Leary CE, von Moltke J, Liang HE, Ang QY, Turnbaugh PJ, et al. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell. 2018;174:271–284. e14

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Remodeling SI, Schneider C, Leary CEO, Von MoltkeJ, Pellizzon M, Ma A, et al. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell. 2018;174:271–84.

    Article  CAS  Google Scholar 

  123. 123.

    Macias-Ceja DC, Ortiz-Masiá D, Salvador P, Gisbert-Ferrándiz L, Hernández C, Hausmann M, et al. Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunol. 2019;12:178–87.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Alenghat lab for discussions and reading this work. This is supported by the National Institutes of Health (DK114123, DK116868 to T.A; F32AI147591 to EME; P30 DK078392), Pew Charitable Trust, and a Kenneth Rainin Foundation award to TA. TA holds an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Theresa Alenghat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eshleman, E.M., Alenghat, T. Epithelial sensing of microbiota-derived signals. Genes Immun (2021). https://doi.org/10.1038/s41435-021-00124-w

Download citation

Search

Quick links