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Abstract
Carbohydrate-specific antibodies are widespread among all classes of immunoglobulins. Despite their broad occurrence,
little is known about their formation and biological significance. Carbohydrate-specific antibodies are often classified as
natural antibodies under the assumption that they arise without prior exposure to exogenous antigens. On the other hand,
various carbohydrate-specific antibodies, including antibodies to ABO blood group antigens, emerge after the contact of
immune cells with the intestinal microbiota, which expresses a vast diversity of carbohydrate antigens. Here we explore the
development of carbohydrate-specific antibodies in humans, addressing the definition of natural antibodies and the
production of carbohydrate-specific antibodies upon antigen stimulation. We focus on the significance of the intestinal
microbiota in shaping carbohydrate-specific antibodies not just in the gut, but also in the blood circulation. The structural
similarity between bacterial carbohydrate antigens and surface glycoconjugates of protists, fungi and animals leads to the
production of carbohydrate-specific antibodies protective against a broad range of pathogens. Mimicry between bacterial and
human glycoconjugates, however, can also lead to the generation of carbohydrate-specific antibodies that cross-react with
human antigens, thereby contributing to the development of autoimmune disorders.

Structural diversity of carbohydrate
antigens

Despite their prominent occurrence at the surface of all cells
and virus particles, carbohydrates do not elicit immune
responses like peptide antigens. Yet, carbohydrate-specific
antibodies are widespread among all classes of immu-
noglobulins [1]. Carbohydrate antigens eliciting an immune
response represent structures consisting of monosaccharides
and oligosaccharides that are foreign to the host. Although
human glycoconjugates encompass a tremendous diversity
of structures, human glycosylation is based on the
combination of only the ten monosaccharides glucose
(Glc), galactose (Gal), N-acetylglucosamine (GlcNAc), N-
acetylgalactosamine (GalNAc), glucuronic acid, iduronic
acid, xylose, mannose, fucose (Fuc), and the sialic acid N-
acetylneuraminic acid (NeuAc) [2]. By comparison, bac-
terial glycosylation is based on an alphabet consisting of
more than one hundred distinct monosaccharides. In addi-
tion to the ten monosaccharides found on human cells,

bacterial glycans contain several deoxysugars and
deoxyaminosugars, such as rhamnose, quinovose, N-
acetylrhamnosamine and N-acetylquinovosamine, arabi-
nose and 3-deoxy-D-manno-octulosonic acid (KDO) [3, 4].
In contrast, Fuc is the only deoxyhexose [5] and NeuAc the
only sialic acid [6] found on human glycoconjugates.
Beyond monosaccharide composition, carbohydrate con-
formations and thereby antigenic properties largely depend
on the types of glycosidic linkages connecting mono-
saccharides. Accordingly, Glc can be recognized as a for-
eign antigen and elicit the production of antibodies, when it
is polymerized through linkages unused in human cells,
such as β1–3 or β1–6 found in fungal and bacterial
β-glucans [7]. The multitude of combinations of mono-
saccharides together with a wide range of glycosidic lin-
kages occurring in prokaryotes [8] and eukaryotes [4] yield
an extensive repertoire of carbohydrate antigens susceptible
to stimulate the production of antibodies in humans.

Commonly recognized carbohydrate antigens

A large pool of serum IgM and IgG recognizes a variety of
carbohydrate antigens [9–12]. These most prominently
recognized antigens include the monosaccharides α-rham-
nose, α-GlcNAc and β-GlcNAc [10], and the sulfated Gal
(β1–4)GlcNAc structure [9]. Antibodies against β4-linked
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oligosaccharides of Glc, α-Gal and GlcNAc(β1–4)GlcNAc
are also commonly observed [10]. The repertoires of car-
bohydrate antigens recognized show a large inter-individual
variability among human beings [10, 13]. Despite the
recognition of mono- and disaccharide epitopes, most cir-
culating carbohydrate-specific antibodies bind with low
specificity to larger glycoconjugates, thus preventing the
occurrence of disseminated antibody-mediated inflamma-
tory reactions and autoimmunity [9]. α-Rhamnose is a
monosaccharide antigen associated with high antibody titer
in human serum [14]. This prominence is explained by the
absence of rhamnose on human glycoconjugates and its
widespread occurrence on microbial polysaccharides
[15, 16]. Another human xenoantigen associated with
carbohydrate-specific antibodies is the sialic acid N-
glycolylneuraminic acid (NeuGc). Through the inactiva-
tion of the cytidine-monophosphate-N-acetylneuraminic
acid hydroxylase gene, humans have lost the ability to
produce NeuGc besides NeuAc [17]. The contact to gly-
coproteins containing NeuGc stimulates the production of
high antibody titers toward NeuGc [18–20]. Antibodies
specific for NeuGc do not cross-react with NeuAc despite
the close structural similarity between both sialic acids [21]
(Fig. 1a).

The two disaccharide structures Gal(α1–3)Gal and Gal-
NAc(α1–3)GalNAc are also major epitopes recognized by
carbohydrate-specific antibodies. The former disaccharide is
commonly referred to as the Galili or α-Gal epitope [22]
(Fig. 1b). α-Gal antibodies [23] make up 1% of circulating
IgG in human serum [24, 25]. α-Gal antibodies are only
present in the blood of humans, apes, and old-world mon-
keys, because these taxa have an inactive pseudogene
instead of a functional α1–3 Gal-transferase gene [26]. The
elevated titers of circulating antibodies targeting Gal(α1–3)
Gal explains the hyperacute rejection of grafted xeno-
transplants, such as pig organs, in humans [27, 28]. α-Gal
antibodies develop during the first 2 years of life [29],
following the exposure to intestinal bacteria expressing the
Galili epitope on their cell wall glycoconjugates. The dis-
accharide GalNAc(α1–3)GalNAc, also called Forssman
antigen [30], is another epitope that is absent from human
glycans but widespread on animal cells and on bacterial
glycoconjugates (Fig. 1b). Accordingly, the Forssman
antigen is the carbohydrate structure associated with the
highest antibody titers in humans [31, 32].

Carbohydrate-specific antibodies also include antibodies
targeting polymorphic oligosaccharide structures in human
beings. Various blood group systems, such as the ABO,
Lewis, and P antigen systems, are based on the selective
expression of polymorphic glycosyltransferase genes. The
ABO glycosyltransferase gene on human chromosome 9
comprises multiple alleles that encode either an α1–3
GalNAc-transferase yielding the A-antigen, or an α1–3

Gal-transferase yielding the B-antigen, or an inactive pro-
tein yielding the O-antigen [33] (Fig. 1c). The structural
difference between the A and B antigens solely relates to
the differential exchange of a hydroxyl group by an acet-
amido group at C2 (Fig. 1d), yet this difference and the
presence of high titers of circulating antibodies against
ABO antigens precludes the transfusion with ABO-
incompatible blood. Two genes on chromosome 19 are
responsible for the expression of Lewis antigens in endo-
dermal tissue, such as intestinal epithelial cells, and secre-
tions [34]. FUT3 encodes an α1–3/1–4 Fuc-transferase,
yielding the Lewis A antigen and FUT2 encodes an α1–2
Fuc-transferase, which adds a second Fuc residue to the
Lewis A antigen, yielding the Lewis B antigen [35]
(Fig. 1e). Subsequent surface presentation of Lewis A and B
antigens on erythrocytes is based on the transport and
incorporation of antigen-expressing glycolipids into the cell
membrane. Lewis X and Lewis Y antigens, which are not
defined as blood cell antigens, are synthesized by the same
glycosyltransferases using a different precursor glycan [34]
(Fig. 1e). The P blood group system is defined by the
presence of three major glycosphingolipid antigens, P1, P,
and Pk, on human erythrocytes, resulting in five pheno-
types. The two most common ones are P1 phenotype,
expressing P1, P, and Pk antigens and P2 phenotype,
expressing P1 and Pk antigens [36]. The A3GALT gene on
chromosome 22 encodes an α1–4 Gal-transferase, which
adds Gal to paragloboside or lactosylceramide, resulting in
P1 and Pk antigens, respectively [37, 38]. The P antigen is
produced by the B3GALNT1 gene, yielding a β1–3
GalNAc-transferase 1, which adds a GalNAc to the Pk
antigen [39] (Fig. 1f).

Carbohydrate-specific antibodies can be detected already
early in life without immunization, as through infections
and vaccinations. Antibodies occurring without prior
immunization are often classified as natural antibodies
[40, 41]. The early colonization of the gut by bacteria right
after birth [42] exposes the immune system to a wide range
of novel carbohydrate antigens, which leads, for example, to
the emergence of α-Gal and ABO-specific antibodies
[25, 43]. Thus, an early immune stimulation by commensal
bacteria could lead to the production of carbohydrate-
specific antibodies. The question arises whether all anti-
bodies classified as natural antibodies are indeed non-
antigen induced antibodies.

Natural antibodies

In contrast to antigen-specific antibodies, which are pro-
duced in a T-cell-dependent manner by mature B cells,
natural antibodies are defined as pre-immune antibodies,
generated without antigenic stimulation and T-cell
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assistance [40]. Thus, natural antibodies are not strictly
speaking antigen-specific, yet they contribute to protection
from bacterial and viral infections by poly-reactive binding
to a wide range of microbes [44, 45]. Natural antibodies,
mainly comprising antibodies of the IgM class but also IgA
[46] and IgG [47, 48], show low-binding affinities and
occur in small amounts [40, 49]. Although natural anti-
bodies do not undergo somatic hypermutation, a fraction of
them may carry mutated variable regions, given that a low
rate of hypermutation takes place even without T-cell

signals [50, 51]. Natural antibodies are produced by innate-
like B cells, mainly B1 CD5+ cells, upon activation of Toll-
like receptors [40, 41, 52].

B1 cells are defined through the combined markers
CD20+CD27+CD43+CD70− [53] and can be CD5+ or
CD5− [54, 55]. CD5+ B1 cells, also called B1a cells, are
mainly produced during fetal and neonatal development
from progenitors in the fetal omentum or the fetal liver,
while they are generally absent in adult bone marrow. CD5−

B1 cells, referred to as B1b cells, are also present in fetal

Fig. 1 Commonly recognized
glycan epitopes by human
antibodies. a N-acetyl-
neuraminic acid (NeuAc) and N-
glycolyl-neuraminic acid
(NeuGc) differ only by the
occurrence of an additional
hydroxyl group in NeuGc. b
Schematic structure of Forssman
and Galili antigen. Glycosidic
linkages are marked using the
minimal nomenclature; α3 for
α1–3, β3 for β1–3 and β4 for
β1–4. c Schematic structure of
ABO blood group antigens. d
Chemical composition of
galactose (Gal) and N-
acetylgalactosamine (GalNAc)
with highlighted acetamido
group at C2. e Schematic
structure of Lewis antigens
Lewis A, B, X, and Y. f
Structure of the P blood group
antigens Pk, P, and P1.
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omentum and liver, but additionally occur in adult bone
marrow, thus providing persistent maintenance of the B1-
cell pool [40, 54]. Conventional B cells, defined as B2 cells,
in contrast, are absent from the fetal omentum. B1a cells
and are typically encoded by germline V genes during VDJ
recombination without or with a low rate of somatic
hypermutation and low N-region diversity [54, 56–58].
Recent studies, however, highlighted the existence of
mouse B1a cells, which produce antibodies with higher N-
region diversity and antibodies that underwent somatic
hypermutation and class switching with increasing age
[59, 60]. As the levels of natural IgA and IgG but not of
IgM remain low in germ-free mice [61], exposure to the gut
microbiota, either through stimulation of innate immunity
or through direct antigen stimulation, likely contributes to
the emergence of natural IgG and IgA [40]. This explana-
tion, however, would imply that not all natural antibodies
adhere to the conventional definition as being antigen-
independent.

Development of carbohydrate-specific
antibodies

Despite the broad occurrence and the large variety of
carbohydrate-specific antibodies, surprisingly little is

known about their origin and maturation. Carbohydrate-
specific antibodies are traditionally believed to be induced
in a T-cell-independent manner. For many years, the
accepted dogma stated that carbohydrate-specific antibodies
feature low affinity and specificity and are mainly confined
to the IgG2 subclass in the blood [62–65]. However, recent
studies described carbohydrate-specific antibodies among
multiple immunoglobulin subclasses [66, 67] and demon-
strated the existence of high-affinity carbohydrate-specific
antibodies [68].

The pathways of antigen processing and presentation are
well-established for peptide antigens. After endocytosis,
peptidic antigens are broken down in phagolysosomes and
fragments are presented in the groove of major histo-
compatibility complex (MHC)-II molecules at the cell sur-
face (Fig. 2). MHC-II is expressed by all antigen-presenting
cells, including B cells, dendritic cells, and macrophages.
Intracellular antigens are processed and presented by MHC-
I in a similar fashion at the surface of all cell types [69]. The
production of specific antibodies results from the activation
of naive B cells in association with T cells providing co-
stimulatory signals. As activated B cells proliferate and
enter the germinal centers of lymphoid follicles, interaction
with T cells mediates class switching and somatic hyper-
mutation and finally leads to the replacement of primary
IgM antibodies with mature IgG displaying high antigen
affinity. High-affinity memory B cells and long-lived
plasma cells, producing large amounts of antibodies, stay
in secondary lymphoid organs or migrate to the bone mar-
row [70, 71].

The generation of carbohydrate-specific antibodies may
in part follow the classical antigen presentation pathway and
T-cell-dependent activation. Glycopeptides can be pre-
sented via MHC-II like standard peptide antigens. The
carbohydrate moiety can be recognized by glycan-specific
B cells, while T cells specifically recognizing the same
glycopeptidic antigens provide the necessary co-stimulatory
activity ensuring antibody maturation [72]. Some zwitter-
ionic polysaccharides devoid of peptidic components share
the ability to be processed by MHC-II to activate T cells and
B cells [73–76]. The best-studied zwitterionic carbohydrate
antigens include the type 1 capsular polysaccharide from
Streptococcus pneumoniae [74, 76, 77], the capsular poly-
saccharide A from Bacteroides fragilis [74, 77], and
zwitterionic motifs in Staphylococcus aureus poly-
saccharides [78].

Some types of antigens can activate B cells without T-
cell help. T-cell-independent antigens of type 1 include
heterogeneous bacterial components that function as poly-
clonal B-cell activators. Type 2 antigens comprise polymers
with repetitive motifs, such as polysaccharides [79]. Due to
their structure type 2 antigens can cross-link several B-cell
receptors, thereby leading to cell activation. In many cases,

Fig. 2 Antigen processing and presentation for different types of
carbohydrate structures. Extracellular glycoproteins are engulfed in
endocytic or phagocytic vesicles, broken down in phagolysosomes and
fragments of the glycopeptide are loaded on major histocompatibility
complex II (MHC-II) to be presented at the cell surface. A similar
mechanism is applied for zwitterionic polysaccharides, however, with
a different processing mechanism depending on nitric oxide (NO).
Glycolipids are presented on CD1-type proteins that are similar to
MHC-I after being captured by lipid transfer proteins, such as sapo-
sins. The mechanisms underlying the processing and presentation of
soluble oligo- and polysaccharides are unknown but are likely to
involve binding through C-type lectins expressed at the surface of
antigen-presenting cells.
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T-cell-independent antigens trigger additional signals, such
as binding to Toll-like receptors, to activate B cells [80].
This mechanism usually results in the generation of low-
affinity antibodies of the IgM and IgG class and in the
inability to stimulate germinal centers and to induce
immunological memory [81]. In mucosal tissue a T-cell-
independent mechanism ensures an efficient B-cell activa-
tion, featuring immunoglobulin class-switch recombination.
The pathway occurs mainly in the lamina propria and iso-
lated lymphoid follicles. B-cell activation is enhanced by
the TNF superfamily proteins BAFF [82] and APRIL [83],
secreted by dendritic cells, which induce the expression of
activation-induced cytidine deaminase (Fig. 3). B cells
activated in this way undergo class-switch recombination,
but not somatic hypermutation, as they do not re-enter the
germinal centers [84]. The BAFF/APRIL-mediated pathway
plays a major role in the emergence of carbohydrate-specific
IgG and IgA arising after the microbial colonization of the
gut [85].

Glycolipid antigens can be presented to T cells by MHC-
like proteins of the CD1 family that are mainly expressed on
macrophages, dendritic cells, and B cells. MHC-I and CD1
are structurally related and share similar mechanisms of
antigen presentation, with the exception that loading of
glycolipid antigens is assisted by different lipid transfer

proteins in endosomes [86]. In humans, the CD1 family
consists of five isoforms, which are divided into three
subgroups, CD1a–c, CD1d, and CD1e, binding different
types of antigens. CD1d-presented glycolipids activate
invariant natural killer T cells, which express an invariant
alpha chain in their T-cell receptor, even though CD1d-
reactive cells with more variable T-cell receptors have also
been described [87]. CD1 isoforms are mainly associated
with the presentation of glycolipids with short carbohydrate
chains [88], which include microbial and self-lipids, lipo-
peptides, and glycolipid antigens, such as α-Gal-ceramide, a
glycosphingolipid found in marine sponges [89].

Although most carbohydrate-specific antibodies are of
low affinity, recent works described high-affinity antibodies
recognizing Klebsiella pneumoniae O-antigens and related
lipopolysaccharides (LPS) from other bacteria [68]. These
antibodies underwent somatic mutations yielding strong
antigen binding and lacked poly-reactivity. The authors
suggested that the simultaneous uptake of glycan and pro-
tein antigens, both present in bacterial membranes, could
explain how B cells recognizing O-antigens may indirectly
receive assistance from T cells and go through affinity
maturation. High levels of somatic hypermutation may
result from many re-entries into germinal centers due to
reactivity to different microbial species. This example
underlines the importance to differentiate between unique
antigen encounters, such as in nonrecurring infections, and
repeated antigen exposure, as occurring in the context of
commensal intestinal bacteria and environmental antigens.

Induction of carbohydrate-specific
antibodies through microbial exposure

The permanent challenge of host immunity by the gut
microbiota leads to high antibody titers against some car-
bohydrate antigens. In fact, the development of
carbohydrate-specific antibodies coincides with the micro-
bial colonization of the gut at birth. Before birth, IgG are
transferred from the maternal circulation to the fetus
crossing the placenta. Postnatally, additional maternal IgG
and IgA are delivered through breast milk to the suckling
infant [90]. Although the development and maturation of
antibodies begins by the third trimester of gestation, neo-
natal antibodies are largely immature [91]. The develop-
ment of functional IgM and IgG repertoires parallels the
first contact with the extrauterine environment [92, 93], but
take several years until completion of antibody maturation
[94, 95]. Some carbohydrate-specific IgM have been
reported in cord blood [96], although they remain marginal
in the first weeks of life [97]. Within the first months of life,
infants develop carbohydrate-specific antibodies such as
ABO-specific IgM [98] and α-Gal antibodies [29, 99]. At

Fig. 3 T-cell-dependent and -independent activation of B-cells.
T cells activate B-cells and promote antibody class switching through
multiple interactions involving antigen-bound MHC-II with the T-cell
receptor (TCR), and activation though the co-receptor systems CD40-
CD40L, ICOS-ICOSL, PD1/PD1L, and CD28-CD80/86. In the
absence MHC-II presentation of antigens to T cells, B-cell activation
and immunoglobulin class-switching can be mediated through binding
to the activating proteins BAFF and APRIL secreted by myeloid cells,
such as dendritic cells (Dc). APRIL binds to its receptor TAC1 on B
cells after docking to heparan sulfate proteoglycans (HSPG).
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the age of 8 months, infants express B1 and B2 cell-derived
ABO antibodies, thus indicating the maturation of specific
antibodies to these antigens beyond natural antibodies [98].
The presence of B2 cell-derived ABO antibodies underlines
the antibody maturation process driven by gut bacterial
stimulation [100–102]. The same principle has been sug-
gested for the production of α-Gal-specific antibodies
[25, 43]. The α-Gal epitope occurs on the surface of several
Enterobacteriaceae, including Klebsiella species, Salmo-
nella minnesota, and Escherichia coli O86:B7 [25, 103].
Colonization of mice deficient for the α1–3 Gal-transferase
Ggta1 with E. coli O86:B7 resulted in the production of α-
Gal IgM [104]. Similarly, the ingestion of E. coli O86:B7 in
humans triggered the production of antibodies to blood
group B antigen, which includes an epitope related to α-Gal
[101] (Fig. 4a). A correlation between the composition of
the gut microbiota and carbohydrate-specific antibodies was
reported in Ggta1-null mice, in which changes in

Clostridiales, Bacteroidales, Lactobacillales, and Deferri-
bacterales were related to changes in the levels and reper-
toires of carbohydrate-specific antibodies [105].

In addition to eliciting the production of antibodies, the
gut microbiota largely contributes to the development of the
mucosal immune system [106–108]. Carbohydrate-specific
IgA secreted into the intestinal lumen bind directly to the
microbiota [109, 110]. Beyond intestinal IgA, IgG targeting
gut bacterial glycans, such as LPS, are also commonly found
in blood serum [111–113]. These serum IgG recognize gly-
can epitopes of both commensal and pathogenic bacteria
[66]. The titers of serum IgG recognizing gut bacteria
increase after colonization of germ-free mice [114, 115].
These systemic antibodies elicited by the gut microbiota
contribute to the protection of the host against infections with
E. coli and Salmonella, as shown in a mouse model [116].

Gut microbes can stimulate the production of systemic
antibodies through different mechanisms. Commensal gut

Fig. 4 Molecular mimicry
between animal glycan
epitopes and bacterial glycans.
a Schematic structure of the
Galili xenoantigen and
Escherichia coli O86 O-antigen
expressed on lipopolysaccharide
(LPS). The conserved Gal(α1–3)
Gal motif is highlighted in blue.
b Structures of
lipooligosaccharides (LOS) of
Neisseria meningitidis and
Haemophilus ducreyi including
the lacto-N-neotetraose (LNnT)
epitope found in human milk
oligosaccharides and on
glycosphingolipids. c Similarity
between the Lewis Y epitope
and the LPS of Helicobacter
pylori M019. d Schematic
structure of the ganglioside
GM1 and the LOS epitope of
Campylobacter jejuni.
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bacteria can reach extra-intestinal sites by direct transloca-
tion and thereby induce systemic antibody responses [117].
Diseases, such as inflammatory bowel disease and diabetes,
featuring increased permeability of the intestinal epithelium
show elevated levels of circulating IgG to gut bacteria
[118–121]. The loss of the barrier function and a subsequent
translocation of bacteria into the system generally leads to
anti-commensal IgG [122]. Transient or localized changes
in intestinal permeability can also be triggered by gastro-
intestinal tract infections, drugs, toxins, malnutrition, or
even psychological stress [123, 124]. Some bacteria rely on
virulent factors to penetrate the intestinal barrier and to
reach the blood circulation [116]. Gut microbial antigens
can also be sampled directly by dendritic cells extending
their dendrites across the epithelium [125, 126]. Some
microbial antigens can be captured by Peyer’s patches and
processed by underlying lymphoid cells during passage
through the small intestine [127].

Roles of carbohydrate-specific antibodies

Intestinal carbohydrate-specific antibodies recognizing
commensal bacteria help to control host-microbial home-
ostasis by mediating tolerance through the reduction of
bacterial antigen expression and subsequent proin-
flammatory signaling [128]. Carbohydrate-specific anti-
bodies targeting gut microbial glycans can cross-react with
structurally similar antigens expressed on pathogens and
thereby contribute to a broad protection against infections
[44, 45]. α-Gal antibodies originally directed toward gut
bacteria, for example, confer a partial protection from the
malaria agent Plasmodium falciparum. Circulating
α-Gal IgM and IgG bind to α-Gal determinants on
glycosylphosphatidylinositol-anchored proteins on the
sporozoite form of P. falciparum. This mechanism explains
why people with high α-Gal IgM levels in malaria-endemic
areas have a decreased risk of infection [104, 129]. In mice,
α-Gal antibody levels can be increased by oral administra-
tion of E. coli O86:B7, which expresses the α-Gal epitope in
the context of its LPS O-antigen [104] (Fig. 4a). Along this
line, a gut microbiota with higher abundance of Enter-
obacteriaceae, including E. coli and Shigella, was asso-
ciated with a reduced risk of P. falciparum infections in
individuals from malaria-endemic regions [130]. The pro-
tection conferred by specific gut bacteria toward parasitic
infections opens new perspectives for the incorporation of
probiotics in new vaccination strategies toward malaria
[131, 132].

Similar mechanisms of protection have been outlined for
infections with Trypanosoma and Leishmania, as these
parasites also express α-Gal on their surface glycans [133].
Accordingly, Leishmania- or Trypanosoma-infected

persons produce high levels of α-Gal antibodies
[131, 134, 135]. These α-Gal antibodies can lyse trypo-
mastigotes, the extracellular form of Trypanosoma cruzi
found in the blood of infected people [136, 137]. Recently,
vaccination with α-Gal nanoparticles has been demonstrated
to protect from Leishmania infection [138]. The protective
effect of α-Gal antibodies induced after infection or
immunization with glycoconjugates presenting the α-Gal
epitope has been shown to be generally stronger than nat-
ural α-Gal antibodies found in healthy individuals [139]. On
the other hand, in some Gram-negative bacteria, binding of
LPS by α-Gal antibodies contributed to decreased comple-
ment activation through the alternative pathway, indicating
that carbohydrate-specific antibodies may in some instances
also contribute to the survival of pathogenic bacteria, acting
so as facilitators of infectious diseases [140].

In contrast to the positive effects of α-Gal IgM and IgG
in the protection from infectious diseases, α-Gal immu-
noglobulins of the IgE class have been associated with
allergic reactions to red meat. Unclear cases of delayed
anaphylactic reactions after the consumption of red meat
have been associated with a history of tick bites in the
affected patients [141, 142]. Further studies confirmed the
induction of α-Gal IgE consecutive to tick bites [142, 143].
The α-Gal epitope was determined in the saliva of the ticks
[144], but the mechanisms leading to the generation of IgE
toward that carbohydrate epitope remain unclear [143, 145].
These antibodies recognize the α-Gal epitope present on
glycoproteins and glycolipids of meat products from beef,
pork or lamb, as demonstrated for the α-Gal epitope in beef
proteins, which was recognized by IgE of meat-allergy
patients [146].

Interestingly, α-Gal IgE antibodies are also responsible
for triggering anaphylaxis to the anti-cancer drug Cetux-
imab, a monoclonal antibody containing α-Gal epitopes on
its glycan chains [147]. The presence of high levels of α-Gal
IgE in serum is now referred to as α-Gal syndrome and, in
theory, these antibodies can provoke allergic reactions to
dairy products and gelatin containing food, as well as to
pharmaceuticals, antivenoms and bioprosthetic heart valves
[145]. Most of the studied cases, however, are restricted to
immediate allergic reactions to Cetuximab and delayed
reactions to red meat or immediate reactions to innards,
such as pork kidney [148]. The delayed reaction to red meat
ingestion is likely explained by the slow kinetics of diges-
tion and absorption of lipid particles carrying α-Gal-con-
taining digestion products into the circulation [149, 150].

Carbohydrate antigen mimicry

Despite the vast structural differences between prokaryotic
and eukaryotic glycoconjugates, specific carbohydrate
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structures are shared between phylogenetically distant
organisms. Such structural similarities can be serendipitous
or purposeful. The expression of ABO blood group antigens
by gut microbes likely reflects a random selection process
that is unrelated to the expression of ABO antigens on
human cells. Some bacteria on the other hand rely on
molecular mimicry [151] in order to evade host immunity or
to exploit host immunity to facilitate infection [72, 152].
Pathogenic bacteria including Neisseria meningitidis,
Neisseria gonorrhoeae, Haemophilus influenzae, and Hae-
mophilus ducreyi express lipooligosaccharides (LOS) car-
rying epitopes similar to lactoneo-series glycosphingolipids
[152–157] (Fig. 4b). N. gonorrhoeae, N. meningitidis
and H. influenzae also express sialylated LOS structures
[158–161]. In addition to mimicking LOS, N. meningitidis
synthesize a protective polysaccharide capsule of polysialic
acid. Whereas group C meningococci produces a polymer
of α2–9-linked sialic acid that is highly immunogenic, the
capsule of group B meningococci is built of α2–8-linked
sialic acid [72], which mimics host polysialic acid [162].
The hyaluronic acid capsule of group A streptococci is
another example of antigen mimicry, which contributes to
the virulence of the pathogen [163, 164] while imitating
hyaluronic acid, an essential component of the human
extracellular matrix [165]. Several gut bacteria express
carbohydrate epitopes similar or identical to human glycans.
Many strains of Helicobacter pylori present fucosylated O-
antigens structures similar to fucosylated Lewis X or Lewis
Y blood group antigens [152, 166] (Fig. 4c). Further
examples of mammalian glycoprotein epitopes in bacterial
O-polysaccharides are found in different E. coli serotypes
and include T antigen, sialyl-T antigen and type 1 and 2
chains [167].

The expression of mimicking carbohydrate antigens by
gut bacteria often relies on the salvage of monosaccharides
derived from host glycoconjugates. H. influenzae, for
instance, uses host-derived sialic acid to assemble its LPS
[168]. N. gonorrhoeae also incorporates host-derived sialic
acid into its LOS [160]. Fuc is another host-derived
monosaccharide frequently internalized by gut bacteria.
Bacteroides thetaiotaomicron and other members of the
genus Bacteroides express fucosidase enzymes and Fuc
transport systems enabling the internalization and utilization
of the monosaccharide [169]. Besides catabolism for energy
production, Fuc can be converted to the activated form
GDP-Fuc by the enzyme L-fucokinase/GDP-Fuc pyropho-
sphorylase [170], which leads to the incorporation into
bacterial capsular polysaccharides or glycoproteins [72].
While the production of mimicking carbohydrate antigens
may contribute to the survival of commensal or pathogenic
bacteria by enabling evasion from the host immune system,
the recognition of antigens similar to endogenous glycans
may lead to the generation of carbohydrate-specific

antibodies triggering autoimmune reactions by cross-
reacting with host glycoconjugates.

Autoimmunity

Molecular mimicry has been shown to contribute to the
emergence of autoimmune diseases, such as Guillain-Barré
syndrome and multiple sclerosis. Guillain–Barré syndrome
represents a typical example of autoimmune disorder that
can be caused by cross-reacting antibodies emerging after a
bacterial infection [171]. Guillain–Barré syndrome is a
neuropathy of the peripheral nervous system, in which
neurons are damaged through an immune reaction involving
antibodies reacting toward surface gangliosides. The disease
is a major cause of acute flaccid paralysis in humans since
the elimination of poliomyelitis [172–174]. Several bacter-
ial and viral infections have been shown to contribute to the
development of Guillain–Barré syndrome. Campylobacter
jejuni, a bacterium causing acute enteritis [175], is the
pathogen most commonly associated with Guillain–Barré
syndrome [176]. Antibodies directed to C. jejuni surface
antigens cross-react with gangliosides expressed on per-
ipheral nerves, thereby contributing to demethylation and
axonal damage [177–179]. C. jejuni expresses sialylated
LOS structures, which strongly resemble gangliosides, such
as GM1 (Fig. 4d). Suspected molecular mimicry in the
development of Guillain-Barré syndrome was further con-
firmed by studies showing anti-ganglioside antibodies in the
serum of patients with Guillain–Barré syndrome [180, 181].
Evidence from animal experiments further demonstrated
that rabbits immunized with ganglioside-mimicking C.
jejuni LOS developed high titers of LOS antibodies cross-
reactive with host gangliosides [182].

Multiple sclerosis is another autoimmune disease in
which autoantibodies specific for carbohydrate epitopes
have been identified. Autoantibodies targeting myelin pro-
teins initiate the injury of white and gray matter of the
central nervous system, thereby leading to progressive
muscle weakness, paresthesia, vision changes and cognitive
decline [183, 184]. Increased levels of antibodies targeting
the gangliosides GM1, GM2, and G7 have been reported in
multiple sclerosis patients [185, 186]. Additional auto-
reactive carbohydrate-specific antibodies have been identi-
fied over the past years, such as antibodies reacting with Glc
(α1–4)Glc [10, 187], galactocerebroside [188], and sulfated
carbohydrates [189]. The involvement of possible infectious
agents in the development of these autoreactive antibodies
remains unclear.

Increased titers of carbohydrate-specific antibodies also
occur in inflammatory bowel disease, which comprises
Crohn’s disease and ulcerative colitis. These antibodies
recognize oligosaccharides that are frequently found on the
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surface of gut microbes, such as laminaribioside, laminarin,
mannobioside, chitobioside, and chitin [190–193]. In our
own studies, we observed an increased antibody response to
carbohydrates in blood serum of patients with Crohn’s
disease compared with healthy controls, which was mainly
reflected by a higher antibody reactivity to fucosylated
oligosaccharides and could be linked to increased antibody
recognition of intestinal Bacteroides species [194]. Given
the association between intestinal dysbiosis and altered anti-
bacterial antibodies, the question arises whether these
antibodies targeting bacterial antigens contribute to the
etiology of inflammatory bowel disease. Despite the large
number of studies outlining alterations of the intestinal
microbiota and increase of carbohydrate-specific antibodies
in inflammatory bowel disease, a direct connection between
these antibodies and an exacerbation of the inflammatory
response observed in inflammatory bowel disease is still to
establish. Beyond the examples addressed here above,
increased levels of carbohydrate-specific antibodies have
been also reported in other autoimmune diseases, including
systemic lupus erythematosus, diabetes type 1 and post-
streptococcal heart disease [186, 195–198].

Analytical tools

The investigation of carbohydrate–protein interactions sig-
nificantly lags behind similar studies on other macromolecule
interactions because of the challenges associated with the
purification and synthesis of glycans. Considering the broad
structural diversity of glycoconjugates, techniques enabling the
parallel and quantitative analysis of a wide range of carbohy-
drate structures are likely to yield the most reliable information
about the specificity and affinity of antibodies recognizing
glycan antigens. Accordingly, large-scale glycan arrays have
turned out as being valuable resources for the quantitative
analysis of carbohydrate–protein interactions [199].

While arrays displaying nucleic acids [200] have been
applied widely for several decades, the first glycan arrays
[201–203] emerged in the early 2000s. Glycan arrays
mainly consist of purified or chemically synthesized gly-
cans, which are immobilized on glass slides by either direct
adsorption of glycans to nitrocellulose surfaces or different
methods of chemical linkage. Using glycans with attached
chemical linkers and slides covered with matching func-
tional groups, covalent immobilization chemistry over-
comes the limitations of adsorption, which include varying
immobilization efficiencies and unspecific binding. Che-
mical immobilization is mostly performed by reaction of
amine-functionalized glycans with N-hydroxysuccinimide
esters, thio-functionalized glycans with maleimide groups
and amine- or thio-functionalized glycans with epoxy
groups. In addition, glycans without a linker can be coupled

covalently via the free reducing end to surfaces with
hydrazides or oxyamines [204, 205]. One type of arrays
displays known structures, whereas shotgun arrays are made
up of glycans, isolated from natural sources with yet
undefined structures. Besides the structural analysis of sin-
gle unknown glycans by mass spectrometry and NMR
spectroscopy, glycans on shotgun arrays can be analyzed by
glycan-binding proteins directly on the array [206]. Glycan
arrays with defined glycan structures have been applied to
characterize the binding specificity of glycan-binding pro-
teins, where previously reported specificities of several
plant lectins, human, bacterial, and viral glycan-binding
proteins could be confirmed [207]. The same study detected
a variety of carbohydrate-specific antibodies in human
serum and suggested the use of glycan arrays in diagnosis
[207]. Indeed, glycan arrays are also used as diagnostic
tools to detect carbohydrate-specific antibodies targeting
glycan structures specific for bacterial or viral antigens or to
glycan cancer markers. An advantage of the detection of
immobilized well-characterized polysaccharides by human
serum antibodies over the detection with crude bacterial
lysates is the avoidance of false-positive diagnoses [208].
The specific detection of antibodies to capsular poly-
saccharides of Burkholderia mallei in the serum of a human
glanders patient compared with the absence of these anti-
bodies in the pre-infection serum of the same person was
demonstrated [208]. Further, microarray analysis allowed
for the differentiation of different types of Salmonella
infections. Testing sera from patients with verified types
of salmonellosis on a microarray with O-antigenic oligo-
saccharides specific for Salmonella enterica serovar
Paratyphi, Typhimurium, or Enteriditis, antibodies were
correctly detected [209].

The application of glycan arrays can provide valuable
information complementary to established genetic markers, for
example when establishing new biomarkers in different types
of cancer. Based on glycan arrays, 24 glycans could be iden-
tified that significantly discriminated between malignant tumors
and healthy controls in the context of ovarian cancer [210].
Another study showed the association between serum antibody
levels to specific glycans in Hodgkin’s lymphoma [211].
Glycan arrays are also used in the development of glyco-
conjugate vaccines, by enabling the quick screening of a broad
panel of potential glycan structures as targets for serum anti-
bodies from infected people [212]. For example, the analysis of
stool and serum samples from Clostridium difficile patients on
microarrays containing oligosaccharide epitopes of the C. dif-
ficile cell wall polysaccharides PS-I and PS-II confirmed novel
vaccine candidates [213]. Glycan arrays are powerful resources
when assessing bacteria or viruses binding to host carbohydrate
structures, such as interactions of the influenza virus to host
receptors [214–217]. Further, arrays consisting of immobilized
antibodies or lectins have been developed to analyze
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carbohydrate-binding properties [218]. Additional tools to
analyze carbohydrate-specific antibodies in a similar fashion
include classical methods, such as ELISA [219, 220], but also
innovative approaches, including multiplex suspension arrays
[221] or cell-based glycan arrays [222].

Another method to study unknown glycans structures is
the analysis of enzymes required for glycan synthesis, such
as glycosyltransferases or transport proteins for glycan
precursors. Given that glycans, in contrast to proteins, are
not encoded by a genomic template, they cannot be directly
identified at the genomic level. The identification of genes
encoding glycosyltransferases or transport proteins for
glycan precursors yields information to predict glycan
assembly. Recently, gene analysis identified thousands of
glycan enzymes in Bacteroides species [223]. In bacterial
genomes, glycosylation genes are often clustered in glyco-
sylation loci, which can be identified by searching for
conserved genes. Identified genes can be expressed
recombinantly to verify their function and to analyze
resulting glycan structures. Additional genetical engineering
of commensal bacteria using CRISPR interference to
manipulate gene expression was introduced recently [224].
Approaches with CHO cells or engineered phage display for
glycan arrays combine the genomic possibilities with clas-
sical glycan array analysis to allow fast and cost-effective
high-throughput testing [222, 225]. Cell-based glycan
arrays enable testing of glycan binding directly on the
surface of CHO cells by flow cytometry. Using recombinant
glycosyltransferases, sialic acid, and Fuc, the small number
of different glycan structures naturally occurring on CHO
cells can be transformed into a diverse glycan repertoire
with distinct carbohydrate epitopes. The utility of cell-based
glycan arrays was demonstrated by the identification of
high-affinity ligands linked to osteoclast differentiation
when testing osteoprogenitor cells with cells expressing
Siglec-15 ligands [222]. To overcome the challenges of
chemical synthesis or time-consuming isolation of glycans,
glycoarrays with engineered E. coli-derived phages dis-
playing diverse surface glycan epitopes have been devel-
oped. In contrast to cell-based glycan arrays, where cells are
detected by flow cytometry, glycophages can be immobi-
lized on glass slides, enabling high-throughput detection of
glycan interactions in a classical array format [225].

Concluding remarks

Carbohydrate-specific antibodies are often referred to as
natural antibodies without underlying specific maturation
process. This simplistic view does not account for the large
number of carbohydrate-specific antibodies emerging in
response to the exposure to the gut microbiota starting at
birth, as demonstrated for the high titers of ABO- and α-

Gal-specific antibodies. The presence of systemic bacte-
rially induced carbohydrate-specific antibodies contributes
to the protection from pathogens but can in cases of anti-
genic mimicry also account for the development of auto-
immune diseases. The functions of carbohydrate-specific
antibodies largely underline their significance in human
health and disease.
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