Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atypical immune phenotype in severe combined immunodeficiency patients with novel mutations in IL2RG and JAK3


Mutations in the common gamma chain of the interleukin 2 receptor (IL2RG) or the associated downstream signaling enzyme Janus kinase 3 (JAK3) genes are typically characterized by a T cell-negative, B cell-positive, natural killer (NK) cell-negative (TB+NK) severe combined immunodeficiency (SCID) immune phenotype. We report clinical course, immunological, genetic and proteomic work-up of two patients with different novel mutations in the IL-2-JAK3 pathway with a rare atypical presentation of TB+NK SCID. Lymphocyte subpopulation revealed significant T cells lymphopenia, normal B cells, and NK cells counts (T−B+NK+SCID). Despite the presence of B cells, IgG levels were low and IgA and IgM levels were undetectable. T-cell proliferation in response to mitogens in patient 1 was very low and T-cell receptor V-beta chain repertoire in patient 2 was polyclonal. Whole-exome sequencing revealed novel mutations in both patients (patient 1—c.923delC frame-shift mutation in the IL2RG gene, patient 2—c.G172A a homozygous missense mutation in the JAK3 gene). Bioinformatic analysis of the JAK3 mutation indicated deleterious effect and 3D protein modeling located the mutation to a surface exposed alpha-helix structure. Our findings help to link between genotype and phenotype, which is a key factor for the diagnosis and treatment of SCID patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: T-SCID mutations.
Fig. 2: Variable segment usage for T-cell receptor β.
Fig. 3: Protein predict analysis results.
Fig. 4: Structural model of JAK3 N-terminal domain.


  1. 1.

    Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol. 2004;22:625–55.

    CAS  Google Scholar 

  2. 2.

    Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell. 1993;73:147–57.

    CAS  Google Scholar 

  3. 3.

    Roberts JL, Lengi A, Brown SM, Chen M, Zhou YJ, O’Shea JJ, et al. Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood. 2004;103:2009–18.

    CAS  Google Scholar 

  4. 4.

    O’Shea JJ, Notarangelo LD, Johnston JA, Candotti F. Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency. J Clin Immunol. 1997;17:431–47.

    Google Scholar 

  5. 5.

    Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol. 2009;9:480–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Manor U, Lev A, Simon AJ, Hutt D, Toren A, Bielorai B. Immune reconstitution after HSCT in SCID-a cohort of conditioned and unconditioned patients. Immunol Res. 2019;67:166–75.

    CAS  Google Scholar 

  7. 7.

    Wahlstrom JT, Dvorak CC, Cowan MJ. Hematopoietic stem cell transplantation for severe combined immunodeficiency. Curr Pediatrics Rep. 2015;3:1–10.

    Google Scholar 

  8. 8.

    Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99:872–8.

    CAS  Google Scholar 

  9. 9.

    Lev A, Simon AJ, Bareket M, Bielorai B, Hutt D, Amariglio N, et al. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients. PLoS ONE. 2012;7:e30494.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Li MX, Gui HS, Kwan JS, Bao SY, Sham PC. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res. 2012;40:e53.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS  Google Scholar 

  14. 14.

    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.

    CAS  PubMed  Google Scholar 

  17. 17.

    Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10:e1003440.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, et al. PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 2014;42:W337–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Candotti F, Oakes SA, Johnston JA, Giliani S, Schumacher RF, Mella P, et al. Structural and functional basis for JAK3-deficient severe combined immunodeficiency. Blood. 1997;90:3996–4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Notarangelo LD, Mella P, Jones A, de Saint Basile G, Savoldi G, Cranston T, et al. Mutations in severe combined immune deficiency (SCID) due to JAK3 deficiency. Hum Mutat. 2001;18:255–63.

    CAS  Google Scholar 

  21. 21.

    Lim CK, Abolhassani H, Appelberg SK, Sundin M, Hammarstrom L. IL2RG hypomorphic mutation: identification of a novel pathogenic mutation in exon 8 and a review of the literature. Allergy Asthma Clin Immunol. 2019;15:2.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mou W, He J, Chen X, Zhang H, Ren X, Wu X, et al. A novel deletion mutation in IL2RG gene results in X-linked severe combined immunodeficiency with an atypical phenotype. Immunogenetics. 2017;69:29–38.

    CAS  Google Scholar 

  23. 23.

    Somech R, Roifman CM. Mutation analysis should be performed to rule out gammac deficiency in children with functional severe combined immune deficiency despite apparently normal immunologic tests. J Pediatr. 2005;147:555–7.

    CAS  Google Scholar 

  24. 24.

    Liu CC, Perussia B, Young JD. The emerging role of IL-15 in NK-cell development. Immunol Today. 2000;21:113–6.

    CAS  Google Scholar 

  25. 25.

    Li J, Nara H, Rahman M, Juliana FM, Araki A, Asao H. Impaired IL-7 signaling may explain a case of atypical JAK3-SCID. Cytokine. 2010;49:221–8.

    CAS  Google Scholar 

  26. 26.

    Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.

    Google Scholar 

  27. 27.

    Faitelson Y, Grunebaum E. Hemophagocytic lymphohistiocytosis and primary immune deficiency disorders. Clin Immunol. 2014;155:118–25.

    CAS  Google Scholar 

  28. 28.

    Chen TL, Wong WW, Chiou TJ. Hemophagocytic syndrome: an unusual manifestation of acute human immunodeficiency virus infection. Int J Hematol. 2003;78:450–2.

    Google Scholar 

  29. 29.

    McClain K, Gehrz R, Grierson H, Purtilo D, Filipovich A. Virus-associated histiocytic proliferations in children. Frequent association with Epstein-Barr virus and congenital or acquired immunodeficiencies. Am J Pediatr Hematol/Oncol. 1988;10:196–205.

    CAS  Google Scholar 

  30. 30.

    Bode SF, Ammann S, Al-Herz W, Bataneant M, Dvorak CC, Gehring S, et al. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica. 2015;100:978–88.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Malmberg KJ, Beziat V, Ljunggren HG. Spotlight on NKG2C and the human NK-cell response to CMV infection. Eur J Immunol. 2012;42:3141–5.

    CAS  Google Scholar 

  32. 32.

    Beziat V, Sleiman M, Goodridge JP, Kaarbo M, Liu LL, Rollag H, et al. Polyclonal expansion of NKG2C(+) NK Cells in TAP-deficient patients. Front Immunol. 2015;6:507.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Farnault L, Chambost H, Michel G, Thuret I, de Saint Basile G, Fischer A, et al. Persistence of natural killer cells with expansion of a hypofunctional CD56-CD16+KIR+NKG2C+ subset in a patient with atypical Janus kinase 3-deficient severe combined immunodeficiency. J Allergy Clin Immunol. 2013;131:1230–3. 1233.e1-2.

    CAS  Google Scholar 

  34. 34.

    Kuijpers TW, Baars PA, Dantin C, van den Burg M, van Lier RA, Roosnek E. Human NK cells can control CMV infection in the absence of T cells. Blood. 2008;112:914–5.

    CAS  Google Scholar 

  35. 35.

    Wu Z, Subramanian N, Jacobsen EM, Laib Sampaio K, van der Merwe J, Honig M, et al. NK Cells from RAG- or DCLRE1C-deficient patients inhibit HCMV. Microorganisms. 2019;7:546.

    Google Scholar 

  36. 36.

    Shearer WT, Dunn E, Notarangelo LD, Dvorak CC, Puck JM, Logan BR, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133:1092–8.

    Google Scholar 

  37. 37.

    de Villartay JP, Lim A, Al-Mousa H, Dupont S, Dechanet-Merville J, Coumau-Gatbois E, et al. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J Clin Investig. 2005;115:3291–9.

    Google Scholar 

  38. 38.

    Ehl S, Schwarz K, Enders A, Duffner U, Pannicke U, Kuhr J, et al. A variant of SCID with specific immune responses and predominance of gamma delta T cells. J Clin Investig. 2005;115:3140–8.

    CAS  Google Scholar 

  39. 39.

    Chinn IK, Eckstein OS, Peckham-Gregory EC, Goldberg BR, Forbes LR, Nicholas SK, et al. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood. 2018;132:89–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Sun J, Yang L, Lu Y, Wang H, Peng X, Dong X, et al. Screening for primary immunodeficiency diseases by next-generation sequencing in early life. Clin Transl Immunol. 2020;9:e1138.

    Google Scholar 

  41. 41.

    Abolhassani H, Aghamohammadi A, Fang M, Rezaei N, Jiang C, Liu X, et al. Clinical implications of systematic phenotyping and exome sequencing in patients with primary antibody deficiency. Genet Med. 2019;21:243–51.

    CAS  Google Scholar 

  42. 42.

    Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. Jama. 2014;312:729–38.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kwan A, Church JA, Cowan MJ, Agarwal R, Kapoor N, Kohn DB, et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: results of the first 2 years. J Allergy Clin Immunol. 2013;132:140–50.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Rechavi E, Lev A, Simon AJ, Stauber T, Daas S, Saraf-Levy T, et al. First year of Israeli newborn screening for severe combined immunodeficiency-clinical achievements and insights. Front Immunol. 2017;8:1448.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Broides A, Nahum A, Mandola AB, Rozner L, Pinsk V, Ling G, et al. Incidence of typically severe primary immunodeficiency diseases in consanguineous and non-consanguineous populations. J Clin Immunol. 2017;37:295–300.

    Google Scholar 

Download references

Author information




All coauthors have reviewed the manuscript and have contributed in a substantive and intellectual manner to the work described.

Corresponding author

Correspondence to Raz Somech.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from legal guardians/parents.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldberg, L., Simon, A.J., Lev, A. et al. Atypical immune phenotype in severe combined immunodeficiency patients with novel mutations in IL2RG and JAK3. Genes Immun 21, 326–334 (2020).

Download citation


Quick links