Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of novel loci controlling inflammatory bowel disease susceptibility utilizing the genetic diversity of wild-derived mice

Abstract

Inflammatory bowel disease (IBD) is a complex disorder that imposes a growing health burden. Multiple genetic associations have been identified in IBD, but the mechanisms underlying many of these associations are poorly understood. Animal models are needed to bridge this gap, but conventional laboratory mouse strains lack the genetic diversity of human populations. To more accurately model human genetic diversity, we utilized a panel of chromosome (Chr) substitution strains, carrying chromosomes from the wild-derived and genetically divergent PWD/PhJ (PWD) strain on the commonly used C57BL/6J (B6) background, as well as their parental B6 and PWD strains. Two models of IBD were used, TNBS- and DSS-induced colitis. Compared with B6 mice, PWD mice were highly susceptible to TNBS-induced colitis, but resistant to DSS-induced colitis. Using consomic mice, we identified several PWD-derived loci that exhibited profound effects on IBD susceptibility. The most pronounced of these were loci on Chr1 and Chr2, which yielded high susceptibility in both IBD models, each acting at distinct phases of the disease. Leveraging transcriptomic data from B6 and PWD immune cells, together with a machine learning approach incorporating human IBD genetic associations, we identified lead candidate genes, including Itga4, Pip4k2a, Lcn10, Lgmn, and Gpr65.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PWD mice are resistant to DSS-induced colitis.
Fig. 2: PWD mice are highly susceptible to TNBS-induced colitis.
Fig. 3: PWD loci regulate susceptibility to DSS-induced colitis.
Fig. 4: PWD loci regulate susceptibility to TNBS-induced colitis.
Fig. 5: B6.Chr12PWD mice are highly susceptible to DSS-induced colitis.
Fig. 6: Identification and prioritization of novel gene candidates associated with IBD susceptibility.

Similar content being viewed by others

Code availability

All R code used for the SVM analysis can be accessed at https://github.com/MahoneyLabGroup/IBD.

References

  1. Engel MA, Neurath MF. New pathophysiological insights and modern treatment of IBD. J Gastroenterol. 2010;45:571–83.

    CAS  PubMed  Google Scholar 

  2. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14:329–42.

    CAS  PubMed  Google Scholar 

  3. Farmer MA, Sundberg JP, Bristol IJ, Churchill GA, Li R, Elson CO, et al. A major quantitative trait locus on chromosome 3 controls colitis severity in IL-10-deficient mice. Proc Natl Acad Sci USA. 2001;98:13820–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ermann J, Garrett WS, Kuchroo J, Rourida K, Glickman JN, Bleich A, et al. Severity of innate immune-mediated colitis is controlled by the cytokine deficiency-induced colitis susceptibility-1 (Cdcs1) locus. Proc Natl Acad Sci USA. 2011;108:7137–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sundberg JP, Elson CO, Bedigian H, Birkenmeier EH. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology. 1994;107:1726–35.

    CAS  PubMed  Google Scholar 

  6. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49:256–61.

    PubMed  PubMed Central  Google Scholar 

  10. McGovern DP, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases. Gastroenterology. 2015;149:1163–76. e2

    CAS  PubMed  Google Scholar 

  11. Gordon H, Trier Moller F, Andersen V, Harbord M. Heritability in inflammatory bowel disease: from the first twin study to genome-wide association studies. Inflamm Bowel Dis. 2015;21:1428–34.

    PubMed  Google Scholar 

  12. Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F. On the subspecific origin of the laboratory mouse. Nat Genet. 2007;39:1100–7.

    CAS  PubMed  Google Scholar 

  13. Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet. 2011;43:648–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011;477:289–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gregorova S, Forejt J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biologica. 2000;46:31–41.

    CAS  PubMed  Google Scholar 

  16. Gregorova S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V, Svenson KL, et al. Mouse consomic strains: Exploiting genetic divergence between Mus m musculus and Mus m domesticus subspecies. Genome Res. 2008;18:509–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bearoff F, Del Rio R, Case LK, Dragon JA, Nguyen-Vu T, Lin CY, et al. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity. Genes Immun. 2016;17:386–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bearoff F, Case LK, Krementsov DN, Wall EH, Saligrama N, Blankenhorn EP, et al. Identification of Genetic Determinants of the Sexual Dimorphism in CNS Autoimmunity. PLoS ONE. 2015;10:e0117993.

    PubMed  PubMed Central  Google Scholar 

  19. Blankenhorn EP, Butterfield R, Case LK, Wall EH, del Rio R, Diehl SA, et al. Genetics of experimental allergic encephalomyelitis supports the role of T helper cells in multiple sclerosis pathogenesis. Ann Neurol. 2011;70:887–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Baranzini SE, Oksenberg JR. The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends Genet. 2017;33:960–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7:e1002254.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Krementsov DN, Asarian L, Fang Q, McGill MM, Teuscher C. Sex-specific gene-by-vitamin D interactions regulate susceptibility to central nervous system autoimmunity. Front Immunol. 2018;9:1622.

    PubMed  PubMed Central  Google Scholar 

  23. Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–6.

    CAS  PubMed  Google Scholar 

  24. Chassaing B, Srinivasan G, Delgado MA, Young AN, Gewirtz AT, Vijay-Kumar M. Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation. PLoS ONE. 2012;7:e44328.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47:172–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Wei Z, Cardinale CJ, Gusareva ES, Van Steen K, Sleiman P, et al. Multiple epistasis interactions within MHC are associated with ulcerative colitis. Front Genet. 2019;10:257.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet. 2004;36:1133–7.

    CAS  PubMed  Google Scholar 

  28. Rogala AR, Morgan AP, Christensen AM, Gooch TJ, Bell TA, Miller DR, et al. The Collaborative Cross as a resource for modeling human disease: CC011/Unc, a new mouse model for spontaneous colitis. Mamm Genome. 2014;25:95–108.

    PubMed  PubMed Central  Google Scholar 

  29. Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, Handel MA, et al. Tissue-specific functional networks for prioritizing phenotype and disease genes. PLoS Comput Biol. 2012;8:e1002694.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tyler AL, Raza A, Krementsov DN, Case LK, Huang R, Ma RZ, et al. Network-based functional prediction augments genetic association to predict candidate genes for histamine hypersensitivity in mice. G3 (Bethesda). 2019;9:4223–33.

    CAS  Google Scholar 

  31. Goya J, Wong AK, Yao V, Krishnan A, Homilius M, Troyanskaya OG. FNTM: a server for predicting functional networks of tissues in mouse. Nucleic Acids Res. 2015;43:W182–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Valatas V, Bamias G, Kolios G. Experimental colitis models: insights into the pathogenesis of inflammatory bowel disease and translational issues. Eur J Pharm. 2015;759:253–64.

    CAS  Google Scholar 

  33. Joyce-Shaikh B, Cua DJ, Bauché D. Induction and analysis of anti-CD40-induced colitis in mice. Bio-Protoc. 2019;9:e3153.

    PubMed  PubMed Central  Google Scholar 

  34. Coutzac C, Adam J, Soularue E, Collins M, Racine A, Mussini C, et al. Colon immune-related adverse events: anti-CTLA-4 and anti-PD-1 blockade induce distinct immunopathological entities. J Crohns Colitis. 2017;11:1238–46.

    PubMed  Google Scholar 

  35. Pagnini C, Arseneau KO, Cominelli F. Natalizumab in the treatment of Crohn’s disease patients. Expert Opin Biol Ther. 2017;17:1433–8.

    CAS  PubMed  Google Scholar 

  36. Kalincik T, Brown JWL, Robertson N, Willis M, Scolding N, Rice CM, et al. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurol. 2017;16:271–81.

    CAS  PubMed  Google Scholar 

  37. Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, et al. Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res. 2009;48:307–43.

    CAS  PubMed  Google Scholar 

  38. Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology. 2012;137:1–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stanford SM, Svensson MN, Sacchetti C, Pilo CA, Wu DJ, Kiosses WB, et al. Receptor protein tyrosine phosphatase alpha-mediated enhancement of rheumatoid synovial fibroblast signaling and promotion of arthritis in mice. Arthritis Rheumatol. 2016;68:359–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dainichi T, Matsumoto R, Mostafa A, Kabashima K. Immune control by TRAF6-mediated pathways of epithelial cells in the EIME (Epithelial Immune Microenvironment). Front Immunol. 2019;10:1107.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Quigley D. Equalizer reduces SNP bias in Affymetrix microarrays. BMC Bioinforma. 2015;16:238.

    Google Scholar 

  42. Keubler LM, Buettner M, Hager C, Bleich A. A multihit model: colitis lessons from the interleukin-10-deficient Mouse. Inflamm bowel Dis. 2015;21:1967–75.

    PubMed  Google Scholar 

  43. Buettner M, Bleich A. Mapping colitis susceptibility in mouse models: distal chromosome 3 contains major loci related to Cdcs1. Physiol Genomics. 2013;45:925–30.

    CAS  PubMed  Google Scholar 

  44. Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie. 2016;122:126–50.

    CAS  PubMed  Google Scholar 

  45. Manoury B, Mazzeo D, Fugger L, Viner N, Ponsford M, Streeter H, et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat Immunol. 2002;3:169–74.

    CAS  PubMed  Google Scholar 

  46. Lassen KG, McKenzie CI, Mari M, Murano T, Begun J, Baxt LA, et al. Genetic coding variant in GPR65 alters lysosomal pH and links lysosomal dysfunction with colitis risk. Immunity. 2016;44:1392–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Spohn SN, Bianco F, Scott RB, Keenan CM, Linton AA, O’Neill CH, et al. Protective actions of epithelial 5-hydroxytryptamine 4 receptors in normal and inflamed colon. Gastroenterology. 2016;151:933–44. e3

    CAS  PubMed  Google Scholar 

  48. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–49.

    CAS  PubMed  Google Scholar 

  49. Linden DR, Chen JX, Gershon MD, Sharkey KA, Mawe GM. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2003;285:G207–16.

    CAS  PubMed  Google Scholar 

  50. Raza A, Crothers JW, McGill MM, Mawe GM, Teuscher C, Krementsov DN. Anti-inflammatory roles of p38alpha MAPK in macrophages are context dependent and require IL-10. J Leukoc Biol. 2017;102:1219–27.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: NIH/NINDS R01 NS097596, NIH/NIAID R21 AI145306, and VCIID COBRE Pilot Project award to D.N.K. (supported by NIH/NIGMS grant P30 GM118228; PI: Ralph Budd); NIH NLM R21 LM012615 to A.L.T. and J.M.M.; and N.I.H. DK113800 to G.M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitry N. Krementsov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahue, K.G., Lara, M.K., Linton, A.A. et al. Identification of novel loci controlling inflammatory bowel disease susceptibility utilizing the genetic diversity of wild-derived mice. Genes Immun 21, 311–325 (2020). https://doi.org/10.1038/s41435-020-00110-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-020-00110-8

This article is cited by

Search

Quick links