Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intestinal glucocorticoid synthesis enzymes in pediatric inflammatory bowel disease patients

Abstract

Inflammatory bowel disease (IBD), such as Crohn’s disease and ulcerative colitis are devastating chronic immunopathologies of the intestinal mucosa, which are frequently treated by immunosuppressive glucocorticoids. Endogenous glucocorticoids are not only produced by the adrenal glands, but also by the intestinal epithelium. Local glucocorticoid synthesis critically contributes to the immune homeostasis of the intestinal mucosa. As defective intestinal glucocorticoid synthesis has been associated with the development of IBD, we investigated the expression of steroidogenic enzymes and the key transcriptional regulator Liver Receptor Homolog-1 (LRH-1/NR5A2) in ileal and colonic biopsies human pediatric IBD and control patients. Furthermore, the induction of steroidogenic enzymes and their transcriptional regulation by LRH-1 was investigated in a mouse model of experimental colitis. These analyses revealed that colitis-induced expression of steroidogenic enzymes in the murine colon is dependent on the presence of LRH-1, as intestinal deletion of LRH-1 strongly reduced their colitis-induced expression. Similarly, a strong correlation between the expression of LRH-1 and different steroidogenic enzymes was seen in intestinal biopsies of human pediatric patients. Importantly, reduced expression of hydroxysteroid dehydrogenase 11B1 (HSD11B1) was observed in IBD patients compared to control patients, suggesting that defective local reactivation of glucocorticoids could contribute to the pathogenesis of IBD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hanauer SB, Present DH. The state of the art in the management of inflammatory bowel disease. Rev Gastroenterol Disord. 2003;3:81–92.

    Google Scholar 

  2. Shaw KA, Cutler DJ, Okou D, Dodd A, Aronow BJ, Haberman Y et al. Genetic variants and pathways implicated in a pediatric inflammatory bowel disease cohort. Genes Immun. 2018. https://doi.org/10.1038/s41435-018-0015-2. [Epub ahead of print].

    Article  Google Scholar 

  3. Powrie F. T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity. 1995;3:171–4.

    Article  CAS  Google Scholar 

  4. Atreya R, Neurath MF. New therapeutic strategies for treatment of inflammatory bowel disease. Mucosal Immunol. 2008;1:175–82.

    Article  CAS  Google Scholar 

  5. Cross RK. Safety considerations with the use of corticosteroids and biologic therapies in mild-to-moderate ulcerative colitis. Inflamm Bowel Dis. 2017;23:1689–701.

    Article  Google Scholar 

  6. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21:55–89.

    CAS  Google Scholar 

  7. Schaaf MJ, Cidlowski JA. Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol. 2002;83:37–48.

    Article  CAS  Google Scholar 

  8. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, et al. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood. 2005;106:4131–8.

    Article  CAS  Google Scholar 

  9. Wang Z, Malone MH, He H, McColl KS, Distelhorst CW. Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem. 2003;278:23861–7.

    Article  CAS  Google Scholar 

  10. Gonzalo JA, Gonzalez-Garcia A, Martinez-A C, Kroemer G. Glucocorticoid-mediated control of the activation and clonal deletion of peripheral T cells in vivo. J Exp Med. 1993;177:1239–46.

    Article  CAS  Google Scholar 

  11. Taves MD, Gomez-Sanchez CE, Soma KK. Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab. 2011;301:E11–24.

    Article  CAS  Google Scholar 

  12. Kostadinova F, Hostettler N, Bianchi P, Brunner T. Extra-adrenal glucocorticoid synthesis in mucosal tissues and its implication in mucosal immune homeostasis and tumour development. In: Qian X (ed.) Glucocorticoids: New Recognition of Our Familiar Friend. Intech: Rijeka, Croatia; 2012.

  13. Kostadinova F, Schwaderer J, Sebeo V, Brunner T. Why does the gut synthesize glucocorticoids?. Ann. Med. 2014;46:1–8.

    Article  Google Scholar 

  14. Noti M, Sidler D, Brunner T. Extra-adrenal glucocorticoid synthesis in the intestinal epithelium: more than a drop in the ocean? Semin Immunopathol. 2009;31:237–48.

    Article  CAS  Google Scholar 

  15. Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr Rev. 2000;21:457–87.

    CAS  Google Scholar 

  16. Croft AP, O’Callaghan MJ, Shaw SG, Connolly G, Jacquot C, Little HJ. Effects of minor laboratory procedures, adrenalectomy, social defeat or acute alcohol on regional brain concentrations of corticosterone. Brain Res. 2008;1238:12–22.

    Article  CAS  Google Scholar 

  17. Cima I, Corazza N, Dick B, Fuhrer A, Herren S, Jakob S, et al. Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J Exp Med. 2004;200:1635–46.

    Article  CAS  Google Scholar 

  18. Noti M, Corazza N, Tuffin G, Schoonjans K, Brunner T. Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFalpha-dependent manner. FASEB J. 2010;24:1340–6.

    Article  CAS  Google Scholar 

  19. Noti M, Corazza N, Mueller C, Berger B, Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med. 2010;207:1057–66.

    Article  CAS  Google Scholar 

  20. Nielsen OH. New strategies for treatment of inflammatory bowel disease. Front Med (Lausanne). 2014;1:3.

    Google Scholar 

  21. Stokkers PC, Camoglio L, van Deventer SJ. Tumor necrosis factor (TNF) in inflammatory bowel disease: gene polymorphisms, animal models, and potential for anti-TNF therapy. J Inflamm. 1995;47:97–103.

    CAS  Google Scholar 

  22. Watts L, Karaderi T, Roberts A, Appleton L, Wordsworth T, Cohen C et al. The severity of ankylosing spondylitis and responses to anti-tumour necrosis factor biologics are not influenced by the tumour necrosis factor receptor polymorphism incriminated in multiple sclerosis. Genes Immun. 2018. https://doi.org/10.1038/s41435-018-0017-0. [Epub ahead of print].

    Article  Google Scholar 

  23. Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, Wendling O, et al. Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell. 2004;15:499–509.

    Article  CAS  Google Scholar 

  24. Mueller M, Cima I, Noti M, Fuhrer A, Jakob S, Dubuquoy L, et al. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J Exp Med. 2006;203:2057–62.

    Article  CAS  Google Scholar 

  25. Coste A, Dubuquoy L, Barnouin R, Annicotte JS, Magnier B, Notti M, et al. LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci USA. 2007;104:13098–103.

    Article  CAS  Google Scholar 

  26. Bouguen G, Langlois A, Djouina M, Branche J, Koriche D, Dewaeles E, et al. Intestinal steroidogenesis controls PPARgamma expression in the colon and is impaired during ulcerative colitis. Gut. 2015;64:901–10.

    Article  CAS  Google Scholar 

  27. Lee JM, Lee YK, Mamrosh JL, Busby SA, Griffin PR, Pathak MC, et al. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature. 2011;474:506–U135.

    Article  CAS  Google Scholar 

  28. Huang J, Jia R, Brunner T. Local synthesis of immunosuppressive glucocorticoids in the intestinal epithelium regulates anti-viral immune responses. Cell Immunol. 2018;334:1–10.

    Article  CAS  Google Scholar 

  29. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25:831–66.

    Article  CAS  Google Scholar 

  30. Odermatt A, Kratschmar DV. Tissue-specific modulation of mineralocorticoid receptor function by 11beta-hydroxysteroid dehydrogenases: an overview. Mol Cell Endocrinol. 2012;350:168–86.

    Article  CAS  Google Scholar 

  31. Schoonjans K, Dubuquoy L, Mebis J, Fayard E, Wendling O, Haby C, et al. Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation. Proc Natl Acad Sci USA. 2005;102:2058–62.

    Article  CAS  Google Scholar 

  32. Schwaderer J, Gaiser AK, Phan TS, Delgado ME, Brunner T. Liver receptor homolog-1 (NR5a2) regulates CD95/Fas ligand transcription and associated T-cell effector functions. Cell Death Dis. 2017;8:e2745.

    Article  CAS  Google Scholar 

  33. Lefevre L, Authier H, Stein S, Majorel C, Couderc B, Dardenne C, et al. LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARgamma ligand synthesis. Nat Commun. 2015;6:6801.

    Article  CAS  Google Scholar 

  34. Takahashi KI, Fukushima K, Sasano H, Sasaki I, Matsuno S, Krozowski ZS, et al. Type II 11beta-hydroxysteroid dehydrogenase expression in human colonic epithelial cells of inflammatory bowel disease. Dig Dis Sci. 1999;44:2516–22.

    Article  CAS  Google Scholar 

  35. Stegk JP, Ebert B, Martin HJ, Maser E. Expression profiles of human 11beta-hydroxysteroid dehydrogenases type 1 and type 2 in inflammatory bowel diseases. Mol Cell Endocrinol. 2009;301:104–8.

    Article  CAS  Google Scholar 

  36. Atanasov AG, Leiser D, Roesselet C, Noti M, Corazza N, Schoonjans K, et al. Cell cycle-dependent regulation of extra-adrenal glucocorticoid synthesis in murine intestinal epithelial cells. FASEB J. 2008;22:4117–25.

    Article  CAS  Google Scholar 

  37. Sidler D, Renzulli P, Schnoz C, Berger B, Schneider-Jakob S, Fluck C, et al. Colon cancer cells produce immunoregulatory glucocorticoids. Oncogene. 2011;30:2411–9.

    Article  CAS  Google Scholar 

  38. Mueller M, Atanasov A, Cima I, Corazza N, Schoonjans K, Brunner T. Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology. 2007;148:1445–53.

    Article  CAS  Google Scholar 

  39. de Souza PR, Sales-Campos H, Basso PJ, Nardini V, Silva A, Banquieri F, et al. Adrenal-derived hormones differentially modulate intestinal immunity in experimental colitis. Mediat Inflamm. 2016;2016:4936370.

    Article  Google Scholar 

  40. Huang SC, Lee CT, Chung BC. Tumor necrosis factor suppresses NR5A2 activity and intestinal glucocorticoid synthesis to sustain chronic colitis. Sci Signal. 2014;7:ra20.

    Article  Google Scholar 

  41. Krylova IN, Sablin EP, Moore J, Xu RX, Waitt GM, Mackay JA, et al. Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell. 2005;120:343–55.

    Article  CAS  Google Scholar 

  42. Horino J, Fujimoto M, Terabe F, Serada S, Takahashi T, Soma Y, et al. Suppressor of cytokine signaling-1 ameliorates dextran sulfate sodium-induced colitis in mice. Int Immunol. 2008;20:753–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Susanna Lintula and Jacob Stenman for performing the RNA extraction of the human biopsy samples, and the members of the Brunner lab for technical support and advice. This work was supported in part by research grants from German Science Foundation to TB, and Pediatric Research Foundation, Finland, and Helsinki University Hospital Research Fund, Finland to KLK. AA was supported by a fellowship from the Ministry of Higher Education and Scientific Research, Sudan and the Baden-WĂĽrttemberg-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brunner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Schwaderer, J., Hantusch, A. et al. Intestinal glucocorticoid synthesis enzymes in pediatric inflammatory bowel disease patients. Genes Immun 20, 566–576 (2019). https://doi.org/10.1038/s41435-019-0056-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-019-0056-1

This article is cited by

Search

Quick links