Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unfolding of hidden white blood cell count phenotypes for gene discovery using latent class mixed modeling


Resting-state white blood cell (WBC) count is a marker of inflammation and immune system health. There is evidence that WBC count is not fixed over time and there is heterogeneity in WBC trajectory that is associated with morbidity and mortality. Latent class mixed modeling (LCMM) is a method that can identify unobserved heterogeneity in longitudinal data and attempts to classify individuals into groups based on a linear model of repeated measurements. We applied LCMM to repeated WBC count measures derived from electronic medical records of participants of the National Human Genetics Research Institute (NHRGI) electronic MEdical Record and GEnomics (eMERGE) network study, revealing two WBC count trajectory phenotypes. Advancing these phenotypes to GWAS, we found genetic associations between trajectory class membership and regions on chromosome 1p34.3 and chromosome 11q13.4. The chromosome 1 region contains CSF3R, which encodes the granulocyte colony-stimulating factor receptor. This protein is a major factor in neutrophil stimulation and proliferation. The association on chromosome 11 contain genes RNF169 and XRRA1; both involved in the regulation of double-strand break DNA repair.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Shim WS, Kim HJ, Kang ES, Ahn CW, Lim SK, Lee HC, et al. The association of total and differential white blood cell count with metabolic syndrome in type 2 diabetic patients. Diabetes Res Clin Pract. 2006;73:284–91.

    CAS  Article  Google Scholar 

  2. 2.

    Chao T-T, Hsieh C-H, Lin J-D, Wu C-Z, Hsu C-H, Pei D, et al. Use of white blood cell counts to predict metabolic syndrome in the elderly: a 4 year longitudinal study. Aging Male. 2014;17:230–7.

    Article  Google Scholar 

  3. 3.

    Pei C, Chang J-B, Hsieh C-H, Lin J-D, Hsu C-H, Pei D, et al. Using white blood cell counts to predict metabolic syndrome in the elderly: A combined cross-sectional and longitudinal study. Eur J Intern Med. 2015;26:324–9.

    Article  Google Scholar 

  4. 4.

    Babio N, Ibarrola-Jurado N, Bulló M, Martínez-González MÁ, Wärnberg J, Salaverría I. et al. White blood cell counts as risk markers of developing metabolic syndrome and its components in the PREDIMED study. PLoS ONE. 2013;8:e58354

    CAS  Article  Google Scholar 

  5. 5.

    Huh JY, Ross GW, Chen R, Abbott RD, Bell C, Willcox B, et al. Total and differential white blood cell counts in late life predict 8-year incident stroke: the Honolulu Heart Program. J Am Geriatr Soc. 2015;63:439–46.

    Article  Google Scholar 

  6. 6.

    Loimaala A, Rontu R, Vuori I, Mercuri M, Lehtimäki T, Nenonen A, et al. Blood leukocyte count is a risk factor for intima-media thickening and subclinical carotid atherosclerosis in middle-aged men. Atherosclerosis. 2006;188:363–9.

    CAS  Article  Google Scholar 

  7. 7.

    Nilsson G, Hedberg P, Ohrvik J. White blood cell count in elderly is clinically useful in predicting long-term survival. J Aging Res. 2014;2014:475093.

    Article  Google Scholar 

  8. 8.

    Ruggiero C, Metter EJ, Cherubini A, Maggio M, Sen R, Najjar SS, et al. White blood cell count and mortality in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2007;49:1841–50.

    Article  Google Scholar 

  9. 9.

    Chmielewski PP, Borysławski K, Chmielowiec K, Chmielowiec J, Strzelec B. The association between total leukocyte count and longevity: Evidence from longitudinal and cross-sectional data. Ann Anat. 2016;204:1–10.

    Article  Google Scholar 

  10. 10.

    Brown DW, Ford ES, Giles WH, Croft JB, Balluz LS, Mokdad AH. Associations between white blood cell count and risk for cerebrovascular disease mortality: NHANES II Mortality Study, 1976-92. Ann Epidemiol. 2004;14:425–30.

    Article  Google Scholar 

  11. 11.

    Ahmadi-Abhari S, Luben RN, Wareham NJ. Seventeen year risk of all-cause and cause-specific mortality associated with C-reactive protein, fibrinogen and leukocyte count in men and women: the EPIC-Norfolk…. Eur J Epidemiol. 2013.

  12. 12.

    Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arterioscler Thromb Vasc Biol. 2005;25:658–70.

    CAS  Article  Google Scholar 

  13. 13.

    Smith MR, Kinmonth A-L, Luben RN, Bingham S, Day NE, Wareham NJ, et al. Smoking status and differential white cell count in men and women in the EPIC-Norfolk population. Atherosclerosis. 2003;169:331–7.

    CAS  Article  Google Scholar 

  14. 14.

    Schwartz J, Weiss ST. Cigarette smoking and peripheral blood leukocyte differentials. Ann Epidemiol. 1994;4:236–42.

    CAS  Article  Google Scholar 

  15. 15.

    Hsieh MM, Everhart JE, Byrd-Holt DD, Tisdale JF, Rodgers GP. Prevalence of neutropenia in the U.S. population: age, sex, smoking status, and ethnic differences. Ann Intern Med. 2007;146:486–92.

    Article  Google Scholar 

  16. 16.

    Dixon JB, O’Brien PE. Obesity and the white blood cell count: changes with sustained weight loss. Obes Surg. 2006;16:251–7.

    Article  Google Scholar 

  17. 17.

    Church TS, Finley CE, Earnest CP, Kampert JB, Gibbons LW, Blair SN. Relative associations of fitness and fatness to fibrinogen, white blood cell count, uric acid and metabolic syndrome. Int J Obes Relat Metab Disord. 2002;26:805–13.

    CAS  Article  Google Scholar 

  18. 18.

    Womack J, Tien PC, Feldman J, Shin JH, Fennie K, Anastos K, et al. Obesity and immune cell counts in women. Metabolism. 2007;56:998–1004.

    CAS  Article  Google Scholar 

  19. 19.

    Pilia G, Chen W-M, Scuteri A, Orrú M, Albai G, Dei M, et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2006;2:e132.

    Article  Google Scholar 

  20. 20.

    Haddy TB, Rana SR, Castro O. Benign ethnic neutropenia: what is a normal absolute neutrophil count? J Lab Clin Med. 1999;133:15–22.

    CAS  Article  Google Scholar 

  21. 21.

    Rana SR, Castro OL, Haddy TB. Leukocyte counts in 7,739 healthy black persons: effects of age and sex. Ann Clin Lab Sci. 1985;15:51–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, Huntsman S, et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am J Hum Genet. 2008;82:81–7.

    CAS  Article  Google Scholar 

  23. 23.

    Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, Patterson N, et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 2009;5:e1000360.

    Article  Google Scholar 

  24. 24.

    Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, Austin MA, et al. Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genet. 2011;7:e1002108.

    CAS  Article  Google Scholar 

  25. 25.

    Li J, Glessner JT, Zhang H, Hou C, Wei Z, Bradfield JP, et al. GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children. Hum Mol Genet. 2013;22:1457–64.

    CAS  Article  Google Scholar 

  26. 26.

    Crosslin DR, McDavid A, Weston N, Nelson SC, Zheng X, Hart E, et al. Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network. Hum Genet. 2012;131:639–52.

    Article  Google Scholar 

  27. 27.

    Keller MF, Reiner AP, Okada Y, van Rooij FJA, Johnson AD, Chen M-H, et al. Trans-ethnic meta-analysis of white blood cell phenotypes. Hum Mol Genet. 2014;23:6944–60.

    CAS  Article  Google Scholar 

  28. 28.

    Telieps T, Köhler M, Treise I, Foertsch K, Adler T, Busch DH, et al. Longitudinal frequencies of blood leukocyte subpopulations differ between NOD and NOR mice but do not predict diabetes in NOD mice. J Diabetes Res. 2016;2016:4208156.

    Article  Google Scholar 

  29. 29.

    Manchia M, Cullis J, Turecki G, Rouleau GA, Uher R, Alda M. The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases. PLoS ONE. 2013;8:e76295.

    CAS  Article  Google Scholar 

  30. 30.

    Tracy RP. Deep phenotyping’: characterizing populations in the era of genomics and systems biology. Curr Opin Lipidol. 2008;19:151–7.

    CAS  Article  Google Scholar 

  31. 31.

    Chiu Y-F, Justice AE, Melton PE. Longitudinal analytical approaches to genetic data. BMC Genet. 2016;17(Suppl 2):4.

    Article  Google Scholar 

  32. 32.

    Nagin DS. Group-based trajectory modeling: an overview. Ann Nutr Metab. 2014;65:205–10.

    CAS  Article  Google Scholar 

  33. 33.

    Strauss VY, Jones PW, Kadam UT, Jordan KP. Distinct trajectories of multimorbidity in primary care were identified using latent class growth analysis. J Clin Epidemiol. 2014;67:1163–71.

    Article  Google Scholar 

  34. 34.

    Gunzler DD, Morris N, Perzynski A, Ontaneda D, Briggs F, Miller D, et al. Heterogeneous depression trajectories in multiple sclerosis patients. Mult Scler Relat Disord. 2016;9:163–9.

    Article  Google Scholar 

  35. 35.

    Baker E, Iqbal E, Johnston C, Broadbent M, Shetty H, Stewart R, et al. Trajectories of dementia-related cognitive decline in a large mental health records derived patient cohort. PLoS ONE. 2017;12:e0178562.

    Article  Google Scholar 

  36. 36.

    Pugh SJ, Albert PS, Kim S, Grobman W, Hinkle SN, Newman RB, et al. Patterns of gestational weight gain and birthweight outcomes in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Fetal Growth Studies-Singletons: a prospective study. Am J Obstet Gynecol. 2017.

    Article  Google Scholar 

  37. 37.

    Justice AE, Howard AG, Chittoor G, Fernandez-Rhodes L, Graff M, Voruganti VS, et al. Genome-wide association of trajectories of systolic blood pressure change. BMC Proc. 2016;10:321–7.

    Article  Google Scholar 

  38. 38.

    Dick DM, Cho SB, Latendresse SJ, Aliev F, Nurnberger JI Jr, et al. Genetic influences on alcohol use across stages of development: GABRA2 and longitudinal trajectories of drunkenness from adolescence to young adulthood. Addict Biol. 2014;19:1055–64.

    CAS  Article  Google Scholar 

  39. 39.

    Lessov-Schlaggar CN, Kristjansson SD, Bucholz KK, Heath AC, Madden PAF. Genetic influences on developmental smoking trajectories. Addiction. 2012;107:1696–704.

    Article  Google Scholar 

  40. 40.

    Riglin L, Collishaw S, Thapar AK, Dalsgaard S, Langley K, Davey Smith G. et al. Association of genetic risk variants to attention-deficit hyperactivity disorder trajectories in the general population. JAMA Psychiatr. 2016;73:1285–92.

    Article  Google Scholar 

  41. 41.

    Holliday EG, McLean DE, Nyholt DR, Mowry BJ. Susceptibility locus on chromosome 1q23-25 for a schizophrenia subtype resembling deficit schizophrenia identified by latent class analysis. Arch Gen Psychiatry. 2009;66:1058–67.

    Article  Google Scholar 

  42. 42.

    Chen WJ. Taiwan Schizophrenia Linkage Study: lessons learned from endophenotype-based genome-wide linkage scans and perspective. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:636–47.

    Article  Google Scholar 

  43. 43.

    Bureau A, Croteau J, Tayeb A, Mérette C, Labbe A. Latent class model with familial dependence to address heterogeneity in complex diseases: adapting the approach to family-based association studies. Genet Epidemiol. 2011;35:182–9.

    Article  Google Scholar 

  44. 44.

    Wickrama KKAS, O’Neal CW, Lee TK. Early community context, genes, and youth body mass index trajectories: an investigation of gene-community interplay over early life course. J Adolesc Health. 2013;53:328–34.

    Article  Google Scholar 

  45. 45.

    Proust-Lima C, Philipps V, Liquet B. Estimation of extended mixed models using latent classes and latent processes: The R package lcmm. J Stat Softw, Artic. 2017;78:1–56.

    Google Scholar 

  46. 46.

    Lionel AC, Tammimies K, Vaags AK, Rosenfeld JA, Ahn JW, Merico D, et al. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum Mol Genet. 2014;23:2752–68.

    CAS  Article  Google Scholar 

  47. 47.

    Wang K-S, Tonarelli S, Luo X, Wang L, Su B, Zuo L, et al. Polymorphisms within ASTN2 gene are associated with age at onset of Alzheimer’s disease. J Neural Transm. 2015;122:701–8.

    CAS  Article  Google Scholar 

  48. 48.

    Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Genetic Risk and Outcome in Psychosis (GROUP) Consortium, Sabatti C, et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet. 2008;83:504–10.

    CAS  Article  Google Scholar 

  49. 49.

    Poulsen M, Lukas C, Lukas J, Bekker-Jensen S, Mailand N. Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol. 2012;197:189–99.

    CAS  Article  Google Scholar 

  50. 50.

    Oren A, Toporik A, Biton S, Almogy N, Eshel D, Bernstein J, et al. hCHL2, a novel chordin-related gene, displays differential expression and complex alternative splicing in human tissues and during myoblast and osteoblast maturation. Gene. 2004;331:17–31.

    CAS  Article  Google Scholar 

  51. 51.

    Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14.

    CAS  Article  Google Scholar 

  52. 52.

    Mesak FM, Osada N, Hashimoto K, Liu QY, Ng CE. Molecular cloning, genomic characterization and over-expression of a novel gene, XRRA1, identified from human colorectal cancer cell HCT116Clone2_XRR and macaque testis. BMC Genom. 2003;4:32.

    Article  Google Scholar 

  53. 53.

    Kalies KU, Hartmann E. Membrane topology of the 12- and the 25-kDa subunits of the mammalian signal peptidase complex. J Biol Chem. 1996;271:3925–9.

    CAS  Article  Google Scholar 

  54. 54.

    Pan X, De Aragão CDBP, Velasco-Martin JP, Priestman DA, Wu HY, Takahashi K, et al. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. FASEB J. 2017;31:3467–83.

    CAS  Article  Google Scholar 

  55. 55.

    Jedidi K, Ramaswamy V, Desarbo WS. A maximum likelihood method for latent class regression involving a censored dependent variable. Psychometrika. 1993;58:375–94.

    Article  Google Scholar 

  56. 56.

    Gardner L, Patterson AM, Ashton BA, Stone MA, Middleton J. The human Duffy antigen binds selected inflammatory but not homeostatic chemokines. Biochem Biophys Res Commun. 2004;321:306–12.

    CAS  Article  Google Scholar 

  57. 57.

    Lindner C, Thiagarajah S, Wilkinson JM, Panoutsopoulou K, Day-Williams AG, arcOGEN Consortium. et al. Investigation of association between hip osteoarthritis susceptibility loci and radiographic proximal femur shape. Arthritis Rheumatol. 2015;67:2076–84.

    CAS  Article  Google Scholar 

  58. 58.

    Ohno R. Granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor in the treatment of acute myeloid leukemia and acute lymphoblastic leukemia. Leuk Res. 1998;22:1143–54.

    CAS  Article  Google Scholar 

  59. 59.

    Zeidler C, Welte K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol. 2002;39:82–8.

    CAS  Article  Google Scholar 

  60. 60.

    Chen J, Feng W, Jiang J, Deng Y, Huen MSY. Ring finger protein RNF169 antagonizes the ubiquitin-dependent signaling cascade at sites of DNA damage. J Biol Chem. 2012;287:27715–22.

    CAS  Article  Google Scholar 

  61. 61.

    Fishilevich S, Zimmerman S, Kohn A, Iny Stein T, Olender T, Kolker E, et al. Genic insights from integrated human proteomics in GeneCards. Database 2016;

    Article  Google Scholar 

  62. 62.

    Weber GM, Adams WG, Bernstam EV, Bickel JP, Fox KP, Marsolo K, et al. Biases introduced by filtering electronic health records for patients with ‘complete data’. J Am Med Inform Assoc. 2017;24:1134–41.

    Article  Google Scholar 

  63. 63.

    McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genom. 2011;4:13.

    Article  Google Scholar 

  64. 64.

    Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR, et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin Pharmacol Ther. 2008;84:362–9.

    CAS  Article  Google Scholar 

  65. 65.

    CRAN-Package lcmm. (accessed 29 Jun 2017).

  66. 66.

    Chassin L, Fora DB, King KM. Trajectories of alcohol and drug use and dependence from adolescence to adulthood: the effects of familial alcoholism and personality. J Abnorm Psychol. 2004;113:483–98.

    Article  Google Scholar 

  67. 67.

    Andruff H, Carraro N, Thompson A, Gaudreau P. Latent class growth modelling: A tutorial. Tutor Quant Methods Psychol. 2009;5:11–24.

    Article  Google Scholar 

  68. 68.

    van de Schoot R, Sijbrandij M, Winter SD, Depaoli S, Vermunt JK. The GRoLTS-checklist: guidelines for reporting on latent trajectory studies. Struct Equ Model. 2017;24:451–67.

    Article  Google Scholar 

  69. 69.

    R Core Team. R: A Language and Environment for Statistical Computing. 2017.

  70. 70.

    Zuvich RL, Armstrong LL, Bielinski SJ, Bradford Y, Carlson CS, Crawford DC, et al. Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain high data quality. Genet Epidemiol. 2011;35:887–98.

    Article  Google Scholar 

  71. 71.

    McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.

    CAS  Article  Google Scholar 

  72. 72.

    Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    CAS  Article  Google Scholar 

  73. 73.

    Loh P-R, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48:1443–8.

    CAS  Article  Google Scholar 

  74. 74.

    Stanaway IB, Hall TO, Rosenthal EA, Palmer M, Naranbhai V, Knevel R, et al. The eMERGE Genotype Set of 83,717 Subjects Imputed to ~40 Million Variants Genome Wide and Association with the Herpes Zoster Medical Record Phenotype. Genet Epidemiol. 2018; e-pub ahead of print 8 Oct 2018:

  75. 75.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS  Article  Google Scholar 

  76. 76.

    Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter I, et al. GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics. 2012;28:3329–31.

    CAS  Article  Google Scholar 

  77. 77.

    Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7.

    CAS  Article  Google Scholar 

Download references


The eMERGE Network was initiated and funded by NHGRI through the following grants:

Phase III: U01HG8657 (Kaiser Permanente Washington, formerly Group Health Cooperative/University of Washington, Seattle); U01HG8685 (Brigham and Women’s Hospital); U01HG8672 (Vanderbilt University Medical Center); U01HG8666 (Cincinnati Children’s Hospital Medical Center); U01HG6379 (Mayo Clinic); U01HG8679 (Geisinger Clinic); U01HG8680 (Columbia University Health Sciences); U01HG8684 (Children’s Hospital of Philadelphia); U01HG8673 (Northwestern University); U01HG8701 (Vanderbilt University Medical Center serving as the Coordinating Center); U01HG8676 (Partners Healthcare/Broad Institute); and U01HG8664 (Baylor College of Medicine).

Phase II: U01HG006828 (Cincinnati Children’s Hospital Medical Center/Boston Children’s Hospital); U01HG006830 (Children’s Hospital of Philadelphia); U01HG006389 (Essentia Institute of Rural Health, Marshfield Clinic Research Foundation and Pennsylvania State University); U01HG006382 (Geisinger Clinic); U01HG006375 (Group Health Cooperative/University of Washington); U01HG006379 (Mayo Clinic); U01HG006380 (Icahn School of Medicine at Mount Sinai); U01HG006388 (Northwestern University); U01HG006378 (Vanderbilt University Medical Center); U01HG006385 (Vanderbilt University Medical Center serving as the Coordinating Center), U01HG004438 (CIDR) and U01HG004424 (the Broad Institute) serving as Genotyping Centers, and U01HG004438 (CIDR) serving as a Sequencing Center.

Phase I: U01-HG-004610 (Group Health Cooperative/University of Washington); U01-HG-004608 (Marshfield Clinic Research Foundation and Vanderbilt University Medical Center); U01-HG-04599 (Mayo Clinic); U01HG004609 (Northwestern University); U01-HG-04603 (Vanderbilt University Medical Center, also serving as the Administrative Coordinating Center); U01HG004438 (CIDR) and U01HG004424 (the Broad Institute) serving as Genotyping Centers.

Author information



Corresponding authors

Correspondence to Taryn O. Hall or David R. Crosslin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hall, T.O., Stanaway, I.B., Carrell, D.S. et al. Unfolding of hidden white blood cell count phenotypes for gene discovery using latent class mixed modeling. Genes Immun 20, 555–565 (2019).

Download citation


Quick links