Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IKKα deficiency disrupts the development of marginal zone and follicular B cells

Abstract

Only few genes have been confidently identified to be involved in the Follicular (FO) and Marginal Zone (MZ) B cell differentiation, migration, and retention in the periphery. Our group previously observed that IKKα kinase inactive mutant mice IKKαK44A/K44A have significantly lower number of MZ B cells whereas FO B cell numbers appeared relatively normal. Because kinase dead IKKα can retain some of its biological functions that may interfere in revealing its actual role in the MZ and FO B cell differentiation. Therefore, in the current study, we genetically deleted IKKα from the pro-B cell lineage that revealed novel functions of IKKα in the MZ and FO B lymphocyte development. The loss of IKKα produces a significant decline in the percentage of immature B lymphocytes, mature marginal zone B cells, and follicular B cells along with a severe disruption of splenic architecture of marginal and follicular zones. IKKα deficiency affect the recirculation of mature B cells through bone marrow. A transplant of IKKα knockout fetal liver cells into Rag−/− mice shows a significant reduction compared to control in the B cells recirculating through bone marrow. To reveal the genes important in the B cell migration, a high throughput gene expression analysis was performed on the IKKα deficient recirculating mature B cells (B220+IgMhi). That revealed significant changes in the expression of genes involved in the B lymphocyte survival, homing and migration. And several among those genes identified belong to G protein family. Taken together, this study demonstrates that IKKα forms a vial axis controlling the genes involved in MZ and FO B cell differentiation and migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol. 2001;167:6834–40.

    Article  CAS  Google Scholar 

  2. Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P, Torres R, et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med. 1999;190:75–89.

    Article  CAS  Google Scholar 

  3. Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive bone marrow B cells. J Exp Med. 1993;177:1009–20.

    Article  CAS  Google Scholar 

  4. Rolink AG, Andersson J, Melchers F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur J Immunol. 1998;28:3738–48.

    Article  CAS  Google Scholar 

  5. Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 2009;9:767–77.

    Article  CAS  Google Scholar 

  6. Kraal G. Cells in the marginal zone of the spleen. Int Rev Cytol. 1992;132:31–74.

    Article  CAS  Google Scholar 

  7. Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu Rev Immunol. 2005;23:161–96.

    Article  CAS  Google Scholar 

  8. Martin F, Kearney JF. Marginal-zone B cells. Nat Rev Immunol. 2002;2:323–35.

    Article  CAS  Google Scholar 

  9. Balazs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 2002;17:341–52.

    Article  CAS  Google Scholar 

  10. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14:617–29.

    Article  CAS  Google Scholar 

  11. He B, Santamaria R, Xu W, Cols M, Chen K, Puga I, et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol. 2010;11:836–45.

    Article  CAS  Google Scholar 

  12. Cariappa A, Boboila C, Moran ST, Liu H, Shi HN, Pillai S. The recirculating B cell pool contains two functionally distinct, long-lived, posttransitional, follicular B cell populations. J Immunol. 2007;179:2270–81.

    Article  CAS  Google Scholar 

  13. Leadbetter EA, Brigl M, Illarionov P, Cohen N, Luteran MC, Pillai S, et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci USA. 2008;105:8339–44.

    Article  CAS  Google Scholar 

  14. Wen L, Brill-Dashoff J, Shinton SA, Asano M, Hardy RR, Hayakawa K. Evidence of marginal-zone B cell-positive selection in spleen. Immunity. 2005;23:297–308.

    Article  CAS  Google Scholar 

  15. Baker N, Ehrenstein MR. Cutting edge: selection of B lymphocyte subsets is regulated by natural IgM. J Immunol. 2002;169:6686–90.

    Article  CAS  Google Scholar 

  16. Cariappa A, Tang M, Parng C, Nebelitskiy E, Carroll M, Georgopoulos K, et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity. 2001;14:603–15.

    Article  CAS  Google Scholar 

  17. Martin F, Kearney JF. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity. 2000;12:39–49.

    Article  CAS  Google Scholar 

  18. Cariappa A, Liou HC, Horwitz BH, Pillai S. Nuclear factor kappa B is required for the development of marginal zone B lymphocytes. J Exp Med. 2000;192:1175–82.

    Article  CAS  Google Scholar 

  19. Guinamard R, Okigaki M, Schlessinger J, Ravetch JV. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol. 2000;1:31–6.

    Article  CAS  Google Scholar 

  20. Hozumi K, Negishi N, Suzuki D, Abe N, Sotomaru Y, Tamaoki N, et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol. 2004;5:638–44.

    Article  CAS  Google Scholar 

  21. Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K, et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity. 2003;18:675–85.

    Article  CAS  Google Scholar 

  22. Becker-Herman S, Lantner F, Shachar I. Id2 negatively regulates B cell differentiation in the spleen. J Immunol. 2002;168:5507–13.

    Article  CAS  Google Scholar 

  23. Feng J, Wang H, Shin DM, Masiuk M, Qi CF, Morse HC 3rd. IFN regulatory factor 8 restricts the size of the marginal zone and follicular B cell pools. J Immunol. 2011;186:1458–66.

    Article  CAS  Google Scholar 

  24. Balkhi MY, Willette-Brown J, Zhu F, Chen Z, Liu S, Guttridge DC, et al. IKKalpha-mediated signaling circuitry regulates early B lymphopoiesis during hematopoiesis. Blood. 2012;119:5467–77.

    Article  CAS  Google Scholar 

  25. Zhu F, Xia X, Liu B, Shen J, Hu Y, Person M. IKKalpha shields 14-3-3sigma, a G(2)/M cell cycle checkpoint gene, from hypermethylation, preventing its silencing. Mol Cell. 2007;27:214–27.

    Article  CAS  Google Scholar 

  26. Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 2001;293:1495–9.

    Article  CAS  Google Scholar 

  27. Kaisho T, Takeda K, Tsujimura T, Kawai T, Nomura F, Terada N, et al. IkappaB kinase alpha is essential for mature B cell development and function. J Exp Med. 2001;193:417–26.

    Article  CAS  Google Scholar 

  28. Jellusova J, Miletic AV, Cato MH, Lin WW, Hu Y, Bishop GA, et al. Context-specific BAFF-R signaling by the NF-kappaB and PI3K pathways. Cell Rep. 2013;5:1022–35.

    Article  CAS  Google Scholar 

  29. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109:S81–96.

    Article  CAS  Google Scholar 

  30. Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107:763–75.

    Article  CAS  Google Scholar 

  31. Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol. 1997;27:2366–74.

    Article  CAS  Google Scholar 

  32. Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621.

    Article  CAS  Google Scholar 

  33. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293:2111–4.

    Article  CAS  Google Scholar 

  34. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365:855–9.

    Article  CAS  Google Scholar 

  35. Johnson EN, Druey KM. Functional characterization of the G protein regulator RGS13. J Biol Chem. 2002;277:16768–74.

    Article  CAS  Google Scholar 

  36. Hwang IY, Hwang KS, Park C, Harrison KA, Kehrl JH. Rgs13 constrains early B cell responses and limits germinal center sizes. PLoS ONE. 2013;8:e60139.

    Article  CAS  Google Scholar 

  37. Shi GX, Harrison K, Wilson GL, Moratz C, Kehrl JH. RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J Immunol. 2002;169:2507–15.

    Article  CAS  Google Scholar 

  38. Amanna IJ, Dingwall JP, Hayes CE. Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. J Immunol. 2003;170:4593–600.

    Article  CAS  Google Scholar 

  39. Weih DS, Yilmaz ZB, Weih F. Essential role of RelB in germinal center and marginal zone formation and proper expression of homing chemokines. J Immunol. 2001;167:1909–19.

    Article  CAS  Google Scholar 

  40. Weih F, Caamano J. Regulation of secondary lymphoid organ development by the nuclear factor-kappaB signal transduction pathway. Immunol Rev. 2003;195:91–105.

    Article  CAS  Google Scholar 

  41. Guo F, Weih D, Meier E, Weih F. Constitutive alternative NF-kappaB signaling promotes marginal zone B-cell development but disrupts the marginal sinus and induces HEV-like structures in the spleen. Blood. 2007;110:2381–9.

    Article  CAS  Google Scholar 

  42. Guo F, Tanzer S, Busslinger M, Weih F. Lack of nuclear factor-kappa B2/p100 causes a RelB-dependent block in early B lymphopoiesis. Blood. 2008;112:551–9.

    Article  CAS  Google Scholar 

  43. Gross JA, Dillon SR, Mudri S, Johnston J, Littau A, Roque R, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity. 2001;15:289–302.

    Article  CAS  Google Scholar 

  44. Engel P, Zhou LJ, Ord DC, Sato S, Koller B, Tedder TF. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity. 1995;3:39–50.

    Article  CAS  Google Scholar 

  45. Otero DC, Rickert RC. CD19 function in early and late B cell development. II. CD19 Facil pro-B/pre-B Transition. J Immunol. 2003;171:5921–30.

    Article  CAS  Google Scholar 

  46. Cinamon G, Zachariah MA, Lam OM, Foss FW Jr., Cyster JG. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol. 2008;9:54–62.

    Article  CAS  Google Scholar 

  47. Cinamon G, Matloubian M, Lesneski MJ, Xu Y, Low C, Lu T, et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol. 2004;5:713–20.

    Article  CAS  Google Scholar 

  48. Niehaus JL, Liu Y, Wallis KT, Egertova M, Bhartur SG, Mukhopadhyay S, et al. CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol Pharmacol. 2007;72:1557–66.

    Article  CAS  Google Scholar 

  49. Abood ME. Molecular biology of cannabinoid receptors. Handb Exp Pharmacol. 2005;168:81–115.

    Article  CAS  Google Scholar 

  50. Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, et al. LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity. 1997;7:283–90.

    Article  CAS  Google Scholar 

  51. Xu M, Zhao R, Zhao ZJ. Identification and characterization of leukocyte-associated Ig-like receptor-1 as a major anchor protein of tyrosine phosphatase SHP-1 in hematopoietic cells. J Biol Chem. 2000;275:17440–6.

    Article  CAS  Google Scholar 

  52. van der Vuurst de Vries AR, Clevers H, Logtenberg T, Meyaard L. Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is differentially expressed during human B cell differentiation and inhibits B cell receptor-mediated signaling. Eur J Immunol. 1999;29:3160–7.

    Article  Google Scholar 

  53. Rickert RC, Roes J, Rajewsky K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 1997;25:1317–8.

    Article  CAS  Google Scholar 

  54. Sanyal M, Fernandez R, Levy S. Enhanced B cell activation in the absence of CD81. Int Immunol. 2009;21:1225–37.

    Article  CAS  Google Scholar 

Download references

Author contributions

MYB and JWB performed all experiments. GW did the Immunofluorescence assays. MYB and YH oversaw the experimental design and data interpretation; and MYB wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Y. Balkhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Data deposition:The microarray data was deposited in NCBI Gene Expression Omnibus (GEO) under accession number GSE102587.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balkhi, M.Y., Willette-Brown, J., Wittmann, G. et al. IKKα deficiency disrupts the development of marginal zone and follicular B cells. Genes Immun 20, 224–233 (2019). https://doi.org/10.1038/s41435-018-0025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-018-0025-0

Search

Quick links