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Gene therapy is a new class of medical treatment that alters part of a patient’s genome through the replacement, deletion, or
insertion of genetic material. While still in its infancy, gene therapy has demonstrated immense potential to treat and even cure
previously intractable diseases. Nevertheless, existing gene therapy prices are high, raising concerns about its affordability for U.S.
payers and its availability to patients. We assess the potential financial impact of novel gene therapies by developing and
implementing an original simulation model which entails the following steps: identifying the 109 late-stage gene therapy clinical
trials underway before January 2020, estimating the prevalence and incidence of their corresponding diseases, applying a model of
the increase in quality-adjusted life years for each therapy, and simulating the launch prices and expected spending of all available
gene therapies annually. The results of our simulation suggest that annual spending on gene therapies will be approximately $20.4
billion, under conservative assumptions. We decompose the estimated spending by treated age group as a proxy for insurance
type, finding that approximately one-half of annual spending will on the use of gene therapies to treat non-Medicare-insured adults
and children. We conduct multiple sensitivity analyses regarding our assumptions and model parameters. We conclude by
considering the tradeoffs of different payment methods and policies that intend to ensure patient access to the expected benefits
of gene therapy.
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INTRODUCTION
Gene therapy is a new class of medical treatment that alters part
of a patient’s genome through the replacement, deletion, or
insertion of genetic material to treat a disease. According to the
United States Food and Drug Administration (FDA), there were
four gene therapies approved for sale in the United States (U.S.) as
of December 2022: voretigene neparvovec (marketed as Lux-
terna®) approved in 2017, onasemnogene abeparvovec-xioi
(marketed as Zolgensma®) approved in 2019, brexucabtagene
autoleucel (marketed as Tecartus®) approved in 2020, and
etranacogene dezaparvovec (marketed as Hemgenix®) approved
in 2022. While still in its infancy, gene therapy has the potential to
treat and even to cure previously intractable diseases. For
example, the introduction of voretigene neparvovec for inherited
retinal disease and onasemnogene abeparvovec-xioi for spinal
muscular atrophy (SMA) has already improved the lives of patients
[1, 2]. Approval decisions are expected for gene therapies to treat
sickle cell anemia, hemophilia A and B, certain types of leukemia,
and other diseases in 2023.
The high price per treatment of available gene therapies as

currently set by drug companies has raised concerns among
payers, patients, physicians and policymakers. For example, at
launch, voretigene neparvovec was priced at $425 thousand per

eye, and onasemnogene abeparvovec-xioi was priced at $2.1
million per patient. From the perspective of the drug companies,
charging high prices for their gene therapy is justified by their
potential clinical benefit and the costs, risks and uncertainties of
development. The clinical benefits include providing significant
gains in longevity or symptom relief over conventional treatments
and addressing often unmet needs in the treatment of rare
diseases. In general, the clinical development of new drugs is
time-consuming and costly. The process from the conception of a
new drug to its clinical application may span decades and cost
billions of dollars, with the bulk of the cost and time spent
conducting later-stage clinical trials, even when these trials require
fewer patients to complete than conventional small-molecule
drugs [3, 4]. The process is also very risky, with only 13.8% of the
therapeutic development programs which enter phase 1 of the
approval process completing phases 2 and 3 and reaching
approval by the FDA [5]. Sales and the use of new drugs also
require the company to meet significant regulatory requirements
for safety, efficacy and current good manufacturing standards.
Most payers will only include new products under their coverage
and reimbursement policies after receiving FDA approval.
New gene therapies, like many speciality drugs, are expected to

have prices set by drug companies at levels that are too expensive
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for most patients to afford on their own [6]. Insurance coverage for
gene therapies is also expected to vary. Many health plans do not
cover the approved gene therapies that have already been
launched into the commercial market, or they impose restrictive
policies to limit the number of patients who might be treated with
a given therapy in a year [7, 8]. If a patient who might benefit from
treatment with gene therapy is uninsured [9] or underinsured [10]
– i.e., when a person is covered by a health plan but faces
substantial out-of-pocket costs in the form of deductibles and
coinsurance payments – gene therapy is likely financially out of
reach for them.
While the prices of individual gene therapies may be justified by

their clinical benefits, spending in aggregate across all available
gene therapies may be significant for payers, depending on the
number of patients treated per year. Contemporaneous and
systematic counts of the number of patients treated per year with
existing gene therapies outside of clinical trials are not available;
the drug companies marketing currently available gene therapies
do not disclose this information in their shareholder reports. We
are aware of only one academic study that has reported relevant
estimates. Quinn et al. (2019) [11] estimate that the number of
expected U.S.-based patients treated with gene therapy or stem
cell therapy will amount to approximately 12 thousand in 2020
and over 340 thousand by 2030. The authors do not present their
estimates disaggregated by gene therapy alone, nor do they
provide estimates of expected patient counts by disease. Similarly,
contemporaneous and systematic accounts of U.S. spending on
available gene therapies by gene therapy, disease, or payer are
not available. Insurers, such as Medicare, the taxpayer-supported
health insurance for Americans over the age of 65, have not
reported these statistics. While we do expect Medicare would pay
for guideline-consistent use of gene therapy after FDA approval,
we are less sure about payment by other health plans. Many non-
Medicare health plans, especially those facing fixed annual
budgets, may not be able or willing to absorb additional spending
should a greater number of people become eligible for expensive
gene therapies, or should many new expensive gene therapies
reach the market [12]. Moreover, coverage and spending may lag
in private health plans because a significant spending increase
might have an impact on employee wages [13]. We are unaware
of any academic study that has projected expected spending on
gene therapies by U.S. payers.
This paper estimates the expected annual fiscal impact of gene

therapy on the U.S. market. We do so by creating and
implementing a novel financial model that estimates the future
number of gene therapy approvals across all therapeutic classes,
the size of their targeted patient populations, and their prices. We
use advanced simulation methods to conduct the analysis. The

use of simulation, rather than purely deterministic methods,
allows us to capture the inherent risks and uncertainty in costs,
revenues, and other parameters of this new therapeutic class. To
populate the model, we include gene therapies already approved
and marketed for sale in the U.S. or in late stage U.S. registered
clinical trials underway as of December 2019. To assess the latter,
we surveyed U.S. public clinical trial databases for late-stage gene
therapy trials that were either actively recruiting or had completed
patient enrollment as of December 2019. We use this information
to estimate the expected annual number of gene therapy patients
and their annual spending starting in January 2020 through 2034.
Our estimates of fiscal impact are necessarily conservative
because we do not account for gene therapies that entered
human clinical trials in January 2020 or thereafter. Our analysis
does account for products that entered into human clinical trials
before this date, and it provides the best estimate available after
taking into account the fact that trial registration and the
recording of endpoints achieved by the trials are lagged. This
assumption is similar to the modeling approach taken by Quinn
et al. (2019). An added advantage of starting our projections in
January 2020 is that it allows us to use sensitivity analysis to check
the accuracy of our predictions based on our observations of
market entry dates, expected patients treated, benefits from
treatment, and product prices after January 2020.

MATERIALS AND METHODS
Human subjects and code availability
Please note, that this study is exempt from IRB review as it uses public and
de-identified aggregate data. The code written to generate all estimates is
available at the request of the study authors.

Summary of methods
As outlined in Fig. 1, we first identify all existing late-stage clinical trials of
gene therapies in phase 2/3 or 3 trials. We then estimate each trial’s
likelihood of success, year of approval and spending on the successful
therapies by summing the product of their expected prices and number of
patients. We describe the separate tasks required for our analyses in the
following subsections: [1] identification of the number of gene therapies
currently in the clinical trial process and their associated diseases and
therapeutic areas [2]; estimation of the probabilities of success of these
trials [6]; estimation of the time to approval [7]; simulation of the expected
number of patients treated by these therapies if approved; and [8]
estimation of the expected market prices of the approved therapies.

Gene therapies in clinical trials and associated diseases and therapeutic
areas. We use clinical trial metadata from the Citeline Trial Trove
database and the U.S. National Library of Medicine’s ClinicalTrials.gov
database to determine the number of gene therapies currently under

Fig. 1 A flowchart showing the performance of the simulation. After extracting the information on each disease from the clinical trial
databases, we simulate whether the disease will obtain an approval. If it fails to do so, the simulation will end for this disease in this iteration.
Otherwise, we estimate the expected number of patients to be treated, compute the corresponding cost of treatment, and store the results.
At each step of the computation, we sourced data from the published literature and impute missing information.
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development. We downloaded data from the Citeline database and
isolated any trials tagged with ‘gene therapy’ under the ‘therapeutic
class’ field. We supplemented this information by searching for trials on
the clinicaltrials.gov main page using the keywords ‘gene therapy’, and
then reading the trial description to determine if the trial was related to
a gene therapy. All database queries were made on or before December
31, 2019. Clinical trials from both sources were merged before filtering
for those clinical trials that were in either phase 2/3 or phase 3 of the
development process and were not known to be ‘compassionate uses’ of
the treatment. Compassionate use refers to the administration of
investigational treatments outside of the clinical trial to treat patients
with serious or immediately life-threatening diseases, or conditions
when there are no comparable or satisfactory alternative treatment
options. We exclude compassionate use from this study as those results
are rarely used as data points in the clinical development process, and
their uses often occur outside of clinical trial settings [14, 15]. Clinical
trials without a U.S. trial site were included in the dataset because it is
currently possible for the FDA to grant marketing approval using
evidence from foreign clinical trials, as empowered by Federal
administrative law 21 CFR Part 312.120 [16]. We removed repeated
entries of the same trial. We then identified diseases, therapeutic areas,
and patient ages targeted by each gene therapy.
This process yielded 109 unique trials investigating 57 distinct

diseases, listed in Table A1 in the Supplementary Materials. We classified
diseases into three categories: cancer (oncology), rare disease, and
general disease. The distribution of diseases and the clinical trials by
category and therapeutic area are shown in Table A1. Most trials and
diseases were categorized in the area of oncology, followed by rare
diseases. These therapeutic areas are notoriously risky for development.
Only 3.1% of drug development programs in oncology and 6.2% in rare
diseases go from phase 1 to approval, compared to the baseline of
13.8% across all drugs and indications [5].

Probability of success estimates simulation. We define a gene therapy
development program as a set of clinical trials made by a sponsor when
testing a therapeutic for efficacy against a disease. We considered
whether gene therapy would be developed for a disease by simulating
correlated random successes for each gene therapy program and
observing if at least one approval took place. This computational
method assumes that clinical trials are always perfectly correlated within
the same development program. It can be argued that different gene
therapy treatments for disease are highly correlated, since they operate
on similar platforms (e.g., CAR-T or in-vivo gene delivery using adeno-
associated virus vectors), even though different gene sequences may be
targeted. To reflect this association, we assumed a correlation of 90%
between development programs in our simulation. A sensitivity analysis,
however, demonstrated that our computations are insensitive to this
parameter.
Phase 3 to approval of probability of success (PoS3A) for each disease

was informed by prior studies on the probabilities of success by
therapeutic area of drug development programs from the MIT
Laboratory of Financial Engineering’s Project ALPHA website [17]. These
estimates were derived from over 55 thousand drug development
programs between January 2000 and January 2020, and computed using
the path-by-path method introduced in Wong et al. [5]. The PoS3A values
used in this study’s simulations are as follows: Autoimmune/Inflamma-
tion, 48.5%; Cardiovascular, 50.1%; Central Nervous System (CNS), 37.0%;
Metabolic/Endocrinology, 45.7%; Oncology, 28.5% and Ophthalmology,

45.9%. The mapping of diseases to therapeutic areas is shown in
Table A2.

Time to approval simulation. An estimate of the time to approval for gene
therapy treatments was determined in order to assess the patient impact
and cost over time of the treatment. Gene therapies require approval from
the FDA through the biologics licensing application (BLA) pathway.
Typically, companies submit a BLA to the FDA after the end of the clinical
trial period. Our estimate assumed that the time between the end of the
last clinical trial for the disease and the submission of the BLA was a
variable drawn from a triangular distribution between 0 and 365 days, with
a median of 182.5 days. This was informed by the practical knowledge that
it takes an average of 6 months to prepare the documents for the BLA
submission [5].
There is an additional lag time between the submission of the BLA and

the FDA’s decision. The FDA has 60 days to decide if it will follow up on a
BLA filing [18], and it can take another 10 months to deliver its decision
[19]. This implies the maximum possible time between BLA submission and
FDA approval will be 12 months. Thus, our estimate assumed that the time
between the BLA submission and the FDA decision would also be drawn
from a triangular distribution between 0 and 365 days, with a median of
182.5 days. These assumptions are also valid for therapies that use the
priority review pathways. This estimate also assumed that the BLA would
be filed only after the last clinical trial for a disease had ended. Trials with
missing declared end dates had their end dates imputed by adding
random durations to the trial start date, drawn from a gamma distribution
fitted to clinical trials with complete date information in the data (see
Fig. 2).
Diseases with a prior approved therapy were automatically considered

to be approved as of December 31st, 2020. For some diseases, their last
clinical trial ended before January 2017, and no subsequent approval or
product launch was observed. Diseases that matched this criterion were
treated as though they had failed.

Number of patients simulation. This simulation captures the number of
new and existing patients treated over time, conditioned on the disease
receiving an approved gene therapy. We considered only the superset of
patient segments listed in the clinical trials for each disease. For example, if
there were two clinical trials, one targeting ‘patients above the age of 40’
and the other targeting ‘patients above the age of 18’, only the latter was
considered when estimating the patient population for the disease. If
insufficient information about the sub-population was given, it was
assumed that all the patients with that disease were eligible.

Incidence and prevalence. We searched medical journals and online data
repositories for the number of currently affected patients and the number
of new patients per year for each indication, such as the Surveillance,
Epidemiology, and End Results (SEER) website and cancer.net. If we
identified an estimated patient population using this method directly, it
entered our model; otherwise, we multiplied the prevalence and incidence
rates of the disease by the population of the U.S., which was assumed to
be 327.7 million [20].
In cases where estimates for the disease incidence were available but

not the prevalence, we combined the incidence of the disease (i.e., i new
patients a year) and the disease survival rate (i.e., p% of the people with a
disease will be alive after k years) to obtain the steady-state estimate of the
prevalence (j) using 1. Alternately, there were diseases identified where the
prevalence was available but not the incidence. In these cases, we

Fig. 2 The empirical distribution of duration against our fitted gamma distribution.
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estimated the incidence from the prevalence by rearranging 1 to yield
Eq. 2.

Prevalence ðjÞ ¼ ki
1� p

(1)

Incidence ðiÞ ¼ jð1� pÞ
k

(2)

To do so, we assumed that the number of patients would be constant
through the years at a level j (that is, ki new patients are added over k years
and j(1− p) patients will die over the same period, and therefore ki= j(1− p)
will determine the number of patients that is constant over time). The
number of patients for each disease is presented in Table A3. These
estimates were adjusted to avoid double-counting in cases of overlapping
patient populations, e.g., the number of patients for ‘Spinal Muscular
Atrophy’ is the difference between ‘Spinal Muscular Atrophy’ and ‘Spinal
Muscular Atrophy I’ (a sub-category of the former).

Treatment of patients over time simulation. This simulation assumes that
newly diagnosed patients were treated immediately upon diagnosis and
that the proportion of existing patients who seek treatment do so in such a
way that the existing stock of patients will decline exponentially, with a
half-life of λ. Mathematically, the proportion of existing patients that seek
treatment between time t and t+ δ after approval is given by E (t, δ, λ),
where:

E t; δ; λð Þ ¼ e
�tln2
λ � e

tþλð Þln2
λ ; t > 0 (3)

We assumed that 25% of the existing stock of patients would seek
treatment in the first year of this simulation. This required that the half-life
be set to 28.91 months, which in turn implied that 95% of all patients who
were diagnosed prior to the approval of the gene therapy would want
treatments within 10.5 years. A sensitivity analysis was performed on this
assumption to determine its impact on the results.

Patient penetration simulation. It is unlikely that all patients with a
prevalent case of a disease will receive gene therapy treatments. This may
be due to ineligibility, or lack of awareness of the treatment, among other
reasons. We labelled the percentage of the patients that received gene
therapy treatments in any given period as the ‘patient penetration rate,’
and modelled this rate using a ramp function, ρ (t, Θmax, Tmax). The ramp
function is frequently used by industry to model the rate of adoption of a
product or technology [11]. It is given by:

ρ t;Θmax; Tmaxð Þ ¼
t�Θmax
Tmax

; 0 � t � Tmax

Θmax; otherwise

(
(4)

We assumed different ramp functions for diseases belonging to our three
categories: rare disease, ‘general’ or chronic disease, and cancers. For rare
diseases, faced with improved prospects of survival, we assumed more
patients would be willing to enrol in new treatments quickly after approval. In
addition, since the number of patients with individual rare diseases is relatively
small, insurersmay bemore willing to cover these therapies andmanufacturers
more able to cope with a larger proportion of patients. Given this, µθ was
assigned a high value of 40% and µT was assigned a low value of 6 months.
On the other hand, many chronic diseases in our general category are

seldom deadly, while affecting a larger number of patients, even in the
millions. Since an acceptable standard of care is often available for these
conditions, patientsmay be less inclined to use new treatments due to a lack of
certainty in benefit and durability. Thus, this study assumed that the maximum
penetration rate for gene therapies approved to treat general chronic diseases
would be 1%, and the ramp-up period, 5 years.
As an intermediate case, cancers have characteristics that fall between these

two extremes, but in general, they are more like the rare disease category. We
therefore assigned values of 10% to the maximum penetration rate and
12months to the ramp-up period. All variances were set to 10% of their means
in order to model a moderate level of uncertainty in our numbers. This
assumption did not affect our mean estimates of the number of affected
patients or spending on gene therapy.
The net number of patients to be treated for the disease at time t after the

approval of a gene therapy is given by:

Patientst ¼ ρ ðt; θmax; TmaxÞ�½Newpatientst þ Eðt; δ; λÞ�Existingpatientst �
(5)

We did not consider the effect of market competition among different
therapies for the same disease, or the effect of patient type on the
expected number of treated patients. This is in part because it is hard to
determine the expected patterns of use without an existing approval.
Instead, we modelled each treatment-disease fraction of the population
that would be eligible for treatment, assuming independence.

Expected market pricing simulation and QALYs gained from gene therapy
treatment. The cost to the healthcare system of providing the gene
therapy for a disease for all patients treated at time t after approval is given
by C(t), where

C tð Þ ¼ Patientst ´ Priceof gene therapy (6)

The price of each treatment is crucial to computing the expected total
spending, and a source of considerable uncertainty because the gene
therapies that are the subject of this analysis are generally not yet
approved, and consequently not priced by their company. We address this
uncertainty by estimating expected prices using well-established methods.
The Institute for Clinical and Economic Review (ICER) is an independent
nonprofit organization that evaluates the clinical and economic value of
healthcare innovation. ICER calculates the expected prices of new
therapies based on the relative benefits and costs to the patient reported
in pivotal clinical trials. ICER does this by comparing the expected quality-
adjusted life-year (QALY) with and without the treatment, then multiplying
the difference in QALY (ΔQALY) by a constant value of a life-year gained,
typically set between $50 thousand and $150 thousand per ΔQALY [21].

Priceof gene therapy ¼ Price per QALY´ΔQALYs (7)

At the time of our analysis, ICER had published several reports
containing estimates of QALYs gained by patients treated with existing
gene therapies, including those with vision loss associated with biallelic
RPE65-mediated retinal disease following treatment with voretigene
neparvovec® [2], and with SMA Type I following treatment with
onasemnogene abeparvovec-xioi® [22]. These reports computed the
ΔQALY using the results of the clinical trials that formed the basis for
FDA approval to estimate the potential improvements in the quality of life
and life expectancy of the patients among treated patients. Replicating the
ICER method for all the clinical trials under consideration in this paper was
infeasible since most of these trials were not yet complete nor had they
reported pivotal trial results for FDA approval during the timeframe of our
analysis. As an alternative, we developed a mathematical model based on
a modification of the ICER method and calibrated using the pricing of
currently available gene therapies approved for use in the U.S. market, to
estimate the expected increase in QALYs from gene therapy for each
disease in our sample.
The Appendix describes our method for estimating the expected QALYs

gained from gene therapy. The next subsection describes our method of
estimating the price per QALY gained from gene therapy.

Price per ΔQALY. To estimate as realistic a market price of new gene
therapy as possible, we calibrated our assumed price per ΔQALY with the
two currently available gene therapies priced in the U.S. market as of
January 2020: onasemnogene abeparvovec-xioi, priced at $2.1 million per
patient [23], voretigene neparvovec, priced at $0.425 million per eye
treated [24], Separately, betibeglogene autotemcel, marketed as Zynteglo,
and sold at a cost of 1.6 million Euros (approximately $1.8 million), has
been approved in the European Union at the time of our analysis, and was
approved in the U.S. in August 2022 with a price of $2.8 million for a one-
time dose. To improve the precision of our estimates, we added the two
CAR-T therapies also approved and available in the U.S. market,
tisagenlecleucel, marketed as Kymriah and approved in 2017, priced at
$0.475 million for a one-time dose [25], and axicabtagene ciloleucel,
marketed at Yescarta and approved in 2019, priced at $0.373 million for a
one-time dose [25]. We calibrated the price per ΔQALY by minimizing the
mean-squared error (MSE) between the estimated price given the
expected change in QALY and the actual price. We reported the mean
absolute percentage error (MAPE) between the estimated price and the
actual price in addition to the MSE. To account for potential ΔQALY
differences between the gene therapies and the CAR-T therapies, we
performed two separate calibrations. We assumed that the price per
ΔQALY for general diseases was identical to that for cancerous indications.
Considering only the therapies approved in the U.S. through January

2020, we estimated a price per E(ΔQALY) of $101,663 (MSE: 2.18 × 109,

C.H. Wong et al.

764

Gene Therapy (2023) 30:761 – 773



MAPE: 11.2%) for rare diseases and $40,797 (MSE: 1.77 × 1010, MAPE:
44.2%) for other diseases. Using all the data points, the price per E(ΔQALY)
for rare diseases increases to $114,781 (MSE: 1.70 × 1012, MAPE: 108%). In
this paper, we used the former value in our calculations, since it has a
smaller MSE and better reflects current prices in the U.S. This value gives us
pricing estimates of $2.09 M per patient for onasemnogene abeparvovec-
xioi and $0.470M per eye for voretigene neparvovec, which is consistent
with the prices we observe in the real world.
Our calibrated price per E(ΔQALY) for cancerous indications is just

slightly below ICER’s $50 thousand to $100 thousand range for
‘intermediate care value’. The higher price per E(ΔQALY) for rare diseases
reaffirms the general belief that developers of treatments for rare diseases
should be compensated more for their elevated research and develop-
ment risk and the lower financial prospects of serving a small population of
patients. It is assumed that the clinical cost of delivering the gene therapy
is a negligible fraction of the overall cost of development (though it is
considerably higher than the delivery cost of conventional therapeutics). It
is also likely that the outside option cost will be similar.
The expected increases in QALY computed by our model were also close

to those reported by ICER for these treatments [1, 2]. For example, we
estimated that treatments for Spinal Muscular Atrophy Type 1 and Leber
Congenital Amaurosis due to RPE65 Mutations provided 20.56 and 4.63
incremental QALYs, whereas ICER estimates onasemnogene abeparvovec-
xioi and voretigene neparvovec to provide 12.23 to 26.58 and 1.3 to 2.7
incremental QALYs, respectively.
ICER also provides a range of ΔQALY estimates corresponding to

different age groups. To compare our estimates, we followed their
definition of age groups: a minor is defined as a patient below the age of
18, and an elderly patient as one who is older than 62 years old. The
remaining cohort of the patients was defined as adults. We used the
distribution of ages to produce a weighted average estimate. We
deliberately applied the same methods and assumptions for all other
diseases to estimate the expected changes in QALY for Spinal Muscular
Atrophy Type 1 and Leber Congenital Amaurosis due to RPE65 Mutations,
even though these numbers were directly available from ICER reports. This
calibration of price per ΔQALY corrects for potential biases in our data, and
as a result, allows our price estimates to be more realistic.
Finally, one million iterations of our simulation were performed to

compute the mean number of gene therapy patients and their total
spending. At this number of iterations, the computed mean was expected
to be within 1.89% of the true mean 95% of the time. The 5th and 95th
percentiles of the computed values were reported as the upper and lower
bounds respectively.

Sensitivity analyses
To test the sensitivity of our results to initial conditions and assumptions,
we simulated ±20% changes in the following variables and analyzed their
impact on our results:

1. The maximum penetration rate in the ramp function, Θmax

2. The time to maximum penetration rate in the ramp function, Tmax

3. The amount of QALY gained in each disease
4. The price per ΔQALY
5. The phase-3-to-approval probability of success (PoS3A)
6. The number of new patients of each disease
7. The number of existing patients of each disease
8. The time from phase 3 to BLA
9. The time from BLA to approval

For each of these factors, we considered its impact on the peak monthly
spending and the cumulative spending from January 2020 to December
2034 of patient treatment. We explored how the variables might change
the timing of peak monthly spending. Additional details are provided in
the Appendix.

RESULTS
Expected number of approvals and patients
Based on the assumptions detailed in the previous section, the
results of our simulation suggest that the expected number of
gene therapies approved between January 2020 and January 2034
will be 18.3, with a 90% confidence interval of (14.0, 23.0) (see
Fig. 3).
The number of patients treated by month is shown in Fig. 4a.

These simulations expect the number of treated patients to peak
around 7911 per month in July 2025 (CI: [3978, 12,477]) before
declining to 5424 by December 2034 (CI: [2778, 8350]). The
monthly number of existing patients treated exceeded the
monthly number of newly diagnosed patients treated until
September 2024, when this trend is expected to reverse. Only
7% of all patients treated in December 2034 were preexisting
patients. Cancer patients were expected to form the largest group
of patients receiving gene therapy treatments, simply due to the
number of cancer indications being targeted (see Fig. 4b). The
relative proportions of cancer, general disease, and rare disease
patients are expected to be 48.0%, 30.0%, and 22.0%, respectively,
in December 2034. The cumulative number of patients to be
treated is expected to be 1.09 million (CI: [0.595 M, 1.66 M]) by the
end of December 2034 (see Fig. 4c).
The results suggest the expected number of new patients

treated with gene therapies will grow from 16,244 in 2020 to
94,696 in 2025 before declining to 65,612 in 2034. The decline can
be attributed to the declining stock of existing patients as they are
treated, and the fact that in our analyses new development
programs that entered human clinical trials after December 2019
were not considered. We also estimate the annual number of
patients over time by age group (not shown). The proportions of
patients who were classified as minors, adults, or elderly were
17.9%, 35.4%, and 46.7% respectively.

Expected spending
We expect an increase in spending up to $2.11 billion per month
(CI: [1.01B, 3.88B]) in April 2026, before decreasing slowly to a
steady-state rate of $1.62 billion (CI: [0.624B, 2.9B]) per month (see
Fig. 5a). This decline in part reflects the fact that our simulations
analyze a fixed stock of gene therapies already approved or under
development on or before December 2020. Treating existing
cancer patients will initially consume over 45.6% of the total
monthly expenditure, but will decline to only 0.99% by December
2034 (see Fig. 5b). In contrast, the proportion of spending on new
patients in the ‘general disease’ and ‘rare disease’ groups will
increase from 0.0% and 4.26%, respectively, in February 2020, to

0
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Fig. 3 Cumulative number of approvals between January 2020 and December 2034 observed from 1,000,000 simulation runs. The line
represents the mean and the shaded region represents the 5th and 95th percentiles of our simulation.
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21.2% and 46.2% by December 2034. The monthly spending on
treating existing patients is projected to exceed the monthly
spending on treating newly diagnosed patients by November
2023. The cumulative discounted spending on treating patients
with approved gene therapy products is expected to reach $241
billion (CI: [123B, 402B]) by December 2034.
In terms of annual spending on approved gene therapies, we

estimate that approximately $5.15 billion would be spent in 2020,
increasing to $25.3B in 2026, before declining to $21.0B in 2034
(see Fig. 6). Across all years in our models, average annual
spending on gene therapies amounts to $20.4 billion.
The average expected increase in QALYs from gene therapy

treatments is estimated to be 5.12 life-years per treated patient
(see Fig. 7a–c). Using an average cost at 2020 present value, this
gain amounts to $43,110 per unit change in QALY.
Minors, adults and the elderly will consume 43.2%, 26.0%, and

30.9%, respectively, of the annual average spending. If we apply

these age group percentages to expected insurance coverage, we
can estimate the expected proportion of spending on gene
therapy by insurers in the U.S. For this analysis, we assume all
elderly people will be covered by Medicare, while two in five
children and one in seven adults will be the U.S. are covered by
Medicaid. The remainder of insurance coverage will be from
private sources related to employer-sponsored plans, exchange
plans or individual plans [26]. Using these proportions, we
estimate that the expected annual spending by Medicare,
Medicaid and private sources respectively may reach $8.1, $5.44,
and $12.2 billion (results not shown).

Results of sensitivity analysis
As can be seen from Fig. 8a–c, the percentage change in the
discounted cumulative spending and the maximum monthly
spending on treating all patients with gene therapy scale linearly
with the percentage change in several variables: the maximum
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Fig. 4 Number of patients treated between January 2020 and December 2034, obtained from 1,000,000 simulation runs. a Monthly
number of patients treated with gene therapy across all diseases, among existing and new patients. b Stacked chart depicting the proportion
of existing and new patients treated in that month, by disease category. c Cumulative number of patients treated. The line represents the
mean and the shaded region represents the 5th and 95th percentiles of our simulation.
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penetration rate (Θmax), the QALY gained (ΔQALY), and the price
per ΔQALY. Increasing or decreasing the transition probability
from phase 3 to approval, or the number of new or existing
patients leads to sublinear increases or decreases in the
discounted cumulative spending and the maximum monthly
spending. However, changing the time variables, such as the
number of days from phase 3 to BLA, from BLA to approval, or the
ramp-up period (Tmax), induces a small change in the opposite
direction.
Introducing perturbations of 20% in the probability of success,

the number of new patients, the number of days from Phase 3 to
BLA or from BLA to approval, or the time to maximum penetration
rate in the ramp function (Tmax) will change the date of the peak
monthly spending in the same direction as the perturbation, by up
to 10 months. Increasing or decreasing the number of existing
patients, on the other hand, will cause a shift of up to 4 months in
the date of peak spending in the opposite direction. Perturbing the
maximum penetration rate (Θmax), the QALY gained (ΔQALY), and
the price per ΔQALY will not change the date of peak spending.

We also studied the effect of changing our assumption regarding
the correlation between development programs. Changing the
correlation from our assumed value of 0.9 to 0 (i.e., perfectly
uncorrelated development programs) increases the mean dis-
counted cumulative spending by 3.4%, from $241 billion to $245
billion. Increasing the correlation to 1.0 instead will decrease the
mean discounted cumulative spending by 0.4% to $236 billion.
In addition, we varied the proportion of existing patients

seeking treatment in the first year, which determined the λ
parameter in Eq. 3, and observed that mean discounted
cumulative spending changes by between −32% and +0.08%.
We expect the results to differ by less than 5% from our baseline if
the proportion of existing patients seeking treatments in the first
year is between 8% and 45%.
As an additional check, we verified that the two additional gene

therapies that were approved and launched in the U.S. market
between January 2020 and June 2021 (brexucabtagene autoleucel
for adult leukemia, July 2020, $.373 million for a one-time dose
and etranacogene dezaparvovec for adult hemophilia B, March

0
1
2
3
4
5
6 ·1011

Undiscounted Discountedat3.5%p.a.

Fig. 6 Cumulative spending on treating patients with gene therapy. The line represents the mean and the shaded region represents the
5th and 95th percentiles of our simulation.
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Fig. 5 Simulated monthly spending on patients treated with gene therapy. a Monthly spending on treating existing and new patients with
gene therapy. b Stacked chart depicting the proportion of spending on treating existing and new patients in that month, by disease category.
The line represents the mean and the shaded region represents the 5th and 95th percentiles from our simulation.
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2021, $.482 million for a one-time dose) were priced within ICER
recommended ranges. This provides additional credence to our
general method.
We also simulated future gene therapy programs that might

enter the pipeline and compared the results against our baseline
(see Fig. 9). To do so, we fit a linear equation of the number of
gene therapy programs against the year. We extrapolated the
fitted line to obtain the expected number of new gene therapy
programs entering the pipeline between 2020 and 2034.
We modelled the occurrence of new gene therapy programs

with a Poisson process, with the time between occurrences
following an exponential distribution. More precisely, if κ
programs will be expected in a year, the time between
consecutive events (t > 0) will be a probability density of κe�κt .
For every event, we randomly assign a disease classification before
simulating the success of the program, and if successful, its time of
approval, the number of patients and spending over time.
As can be seen from Fig. 10, while introducing new gene

therapies into the pipeline increased the cumulative number of
approvals by 25.1% from 18.3 to 23.0, the cumulative number of

patients increased by only 15.3%, from 1.09 M to 1.26 M. Similarly,
our cumulative spending estimates only increased by 15.7%, from
$306B to $354B.

DISCUSSION
We estimate that the annual spending on gene therapy, using the
gene therapies already approved and launched in the U.S. market
and the pipeline of gene therapies in late-stage clinical trial
development as of December 2020, will average $20.4 billion. This
estimate may be a lower bound since our simulation employs
conservative assumptions about the speed and volume of gene
therapy development. Specifically, we did not account for the
possibility that a program in Phase 1 or Phase 2 might be fast-
tracked or granted accelerated approval. Extrapolation of the
number of new development programs increased our mean
estimated spending and number of patients by approximately
16%, although the effects could be much larger in the long run.
A potential criticism of our approach is that estimating the

prices of new gene therapies based solely on changes in QALY will
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Fig. 7 QALYs gained by treating existing and new patients with gene therapy. a QALYs gained by treating existing and new patients with
gene therapy. b Cumulative QALY gained by treating patients with gene therapy overall. c Cumulative QALY gained by treating patients with
gene therapy broken out by new and existing patients. The line represents the mean and the shaded region represents the 5th and 95th
percentiles of our simulation.
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both overestimate and underestimate aggregate spending. On
the one hand, we did not consider the potential cost savings of
gene therapy due to the lack of necessity of multiple therapeutic
sessions over time compared to the current standard of care, nor
did we consider the recovery of the opportunity cost of caregivers.
While gene therapy may provide net cost-savings in treatment

(e.g., valoctocogene roxaparvovec for the management of
hemophilia A [27]), the evidence is not robust at this time. We
also have not considered the possibility that multiple gene
therapies for the same disease may lower their prices. Examining
the clinical trial information available to us, we do not see
overlapped gene therapy programs targeting the exact same

Fig. 9 A plot of the number of programs initiated over time in our dataset.
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Fig. 8 Tornado charts showing the sensitivity of the variables on the different metrics. a Tornado chart of the impact of the variables on
the peak value. b Tornado chart of the impact of the variables on the cumulative spending (both nominal and discounted). c Tornado chart of
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results by 1 month. The black bars represent the effect of increasing the variable by 20% and the red bars represent the effect of decreasing
the variable by 20%.
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disease-population pair, reducing the potential for very robust
brand-brand competition. There is also no empirical evidence that
the presence of multiple brand-name drugs in the same
therapeutic class lowers the prices of existing drugs [28].
On the other hand, we have omitted the clinical costs of

delivering gene therapy in our analysis, which are often higher than
conventional therapeutics due to the need for inpatient hospital
care. In addition, research has shown that newmedical technologies
generally raise health costs and that cost-increasing changes in
treatments outweigh cost-saving changes the majority of the time
[29, 30]. These considerations suggest that our approach is
conservative and that our estimates are likely to be lower bounds
for the realized annual spending over the time period of study.
Our estimates suggest the average cost of gene therapy to

amount to $43,110 per unit QALY, several times the average
annual expenditure of $16,346 for American cancer patients
between 2010 and 2014 [31]. However, when viewed from the
broader perspective of aggregate U.S. spending, these figures
seem less daunting. In 2018, the U.S. tax revenue was $3.33 trillion,
of which individual income tax and payroll tax revenues were
$1.68 and $1.17 trillion, respectively [32]. Fully funding the
average annual spending of $20.4 billion through income and
payroll taxes will require an increase of 0.612%. Since Medicare
already covers all elderly patients, we estimate that the program

would need to increase its annual budget by up to $7.89 billion, or
1.1% of its 2018 spending of $750.2 billion [33]. Funding this
increase would require either an increase in payroll taxes or a
reduction in other expenditures.
We estimate that annual gene therapy spending by Medicaid

may reach $5.44 billion. This is approximately 0.9% of its
2018 spending of $597.4 billion [33]. Since Medicaid cannot
restrict access to therapies with expected benefit to the patient,
while state budgets must be balanced year to year, managing an
expected increase in spending on new treatments will require
either raising funds from state and federal governments to pay
for these additional costs or cutting benefits. We estimate that
the annual spending by minors and adults insured by private
health plans and employers on gene therapy may reach $12.2
billion. This amount of annual spending will also likely pose
significant challenges for healthcare plans and employers to
manage. In order to manage these potential costs, plans might
choose not to cover spending on gene therapy, or impose
restrictive policies beyond our assumptions to limit the number
of patients who gain access to treatment [8]. Some plans have
already warned they may not be able or willing to absorb the
additional spending should a greater number of people become
eligible for expensive gene therapy treatments once new ones
reach the market [12].

Fig. 10 Comparison between the results of the simulations with and without assuming additional gene therapy programs entering the
pipeline. a Cumulative number of approvals. b Cumulative number of patients treated. c Cumulative spending on gene therapy. The line
represents the mean and the shaded region represents the 5th and 95th percentiles of our simulation.

C.H. Wong et al.

770

Gene Therapy (2023) 30:761 – 773



Several innovative methods to finance gene therapy treatments
complementary to the existing U.S. system have been proposed.
The observation has been made that the empirical evidence
supporting the effectiveness and durability of gene therapy is
currently limited. Consequently, the provision of ‘full price’
reimbursement for these therapies under a typical policy
constitutes a significant risk of failure that is currently borne by
plans and employers alike. These methods thus aim to reduce
the risks held by plans and employers in financing access to
these therapies under conditions of extreme uncertainty. As one
example, the drug companies selling onasemnogene
abeparvovec-xioi and voretigene neparvovec offer outcome-
based payments in which the company is only reimbursed (or
paid a portion of full reimbursement) if the patients achieve
predefined outcomes after treatment [34]. Mortgage-like pay-
ments and performance-based annuity payments are additional
alternative ways to finance gene therapy treatments [35]. In
September 2019, Cigna, one of the largest U.S. health insurance
companies, announced a program called Embarc Benefit Protec-
tion in which employers, health plans, and unions would pay a
monthly per-member premium that would provide its members
with access to covered gene therapies. As of the time of writing,
onasemnogene abeparvovec-xioi and several other gene and cell
therapies are covered through this program at no out-of-pocket
costs to patients, if their physicians authorize treatment [36].
A more ambitious proposal involves creating a national or

international gene therapy reinsurance company that would
perform a similar function to Embarc, but one serving many
primary health insurance providers. By allowing multiple primary
insurers to cede the specific risk of gene therapy patients to the
reinsurer, these risks can be diversified over a much larger pool of
members, thus lowering the cost of capital. The capital required
for such a reinsurer can be raised through securitization
techniques as described in Montazerhodjat et al. [35], which
simulated such a structure, and concluded that the returns to
investors would be attractive under a broad range of assumptions.
However, their simulations were not specifically calibrated for
gene therapy. Our framework may provide a useful complement
to their analysis.
The reinsurer, on assuming the responsibility of delivering the

gene therapies, may find it more cost-effective and produce
higher quality outcomes to maintain nationally distributed gene
therapy Centers of Excellence (CoEs). This function may seem too
far afield for a reinsurance company, but the ability to have direct
control over the quality of therapeutic delivery and to collect data
on the performance of these therapies over time are two
compelling reasons for the reinsurer to perform this task. The
data collected from these centres will be critical for assessing the
actuarial risk of reinsurance and for implementing performance-
related contractual agreements, e.g., if a gene therapy ceases to
be effective, then any remaining payments for the therapy will be
cancelled.
An additional benefit of a single reinsurer to manage the risk

and responsibility of delivering gene therapy is the ability of that
reinsurer to avoid the adverse selection problem that often
plagues individual insurers [37]. This problem arises when some
insurers are willing to pay for gene therapy treatments while
others are not, leading patients who require gene therapies to
enrol en masse with those insurers providing coverage. Since
these policies will likely have higher premiums to cover the high
cost of gene therapy, patients have an incentive to leave the
policy after receiving the treatment, leaving the insurers to pay
the remaining cost without being able to recover the expenses.
If a single reinsurer can aggregate this risk across a large pool of
gene therapy patients and coordinate payouts across all
insurers, this adverse selection problem may be greatly
mitigated or altogether avoided. The viability of such a
reinsurance vehicle depends critically on the various parameters

of the modules in our simulation. In February 2023, the Biden
Administration announced the Cell and Gene Therapy Access
Model, in which state Medicaid agencies would assign the
Centers for Medicare and Medicaid Services the responsibility to
coordinate and administer multi-state contracts with manufac-
turers for certain gene therapies. This arrangement is effectively
a type of reinsurance model in which the federal government
ensures access to selected gene therapies with state Medicaid
beneficiaries [38].
Returning to the limitations of our study, our simulation model

requires multiple inputs that are inherently uncertain due to the
lack of supporting empirical evidence. In this paper, we make
multiple forecasting assumptions based on our best currently
available knowledge, and we have tried to ensure they are
methodologically conservative given the information to inform
them. We have also made certain assumptions to simplify data
collection and to make the computations tractable. We have
provided tests of these assumptions in our sensitivity analyses.
One great advantage of our simulation framework is that it can
easily accept new data and new assumptions as the available
information evolves. Finally, we excluded gene therapy clinical
trials conducted solely outside the U.S., to be consistent with U.S.
law governing FDA approvals. There are other reasons to exclude
these trials from our analyses, including that their listing may not
provide enough information to evaluate their consistency with the
trials registered in the datasets we relied on to construct the
sample of gene therapy trials. These exclusions will render our
spending estimates conservative if and only if they target diseases
and populations that are not targeted by the trials registered in
the U.S. that met our inclusion criteria. If they are trials that are
focused on the same diseases and populations that are targeted
by U.S. registered trials, their existence will have no material
impact on our results.

CONCLUSION
In this paper, we developed and implemented a novel mathema-
tical model to estimate the expected annual number of patients
treated with gene therapy over time, and the annual cost of gene
therapy in the U.S. overall and by payer. It is our hope that this
study, and our estimates of the potential financial impact of gene
therapy in the U.S., will provide more clarity on the potential
clinical and fiscal impacts of this new class of treatment and
identify uncertainties involved in any projection of expected
spending on these therapies in aggregate and by specific U.S.
payers. We hope this work will help decision-makers, including
patients, physicians, hospital administrators, health plans, employ-
ers, drug companies and other innovators, and policymakers make
informed decisions about future access and reimbursement for
this novel therapeutic class.

DATA AVAILABILITY
The data used in this study are available by request from the authors.

REFERENCES
1. Spinraza® and Onasemnogene abeparvovec-xioi ® for spinal muscular atrophy:

Effectiveness and Value, Final Evidence Report [Internet]. Boston, MA: Institute for
Clinical and Economic Review; 2019 Apr; [cited 2022 Dec 7]. Available from:
https://icer.org/wp-content/uploads/2020/10/ICER_SMA_Final_Evidence_Report_
052419.pdf

2. Voretigene Neparvovec for Biallelic RPE65-Mediated Retinal Disease: Effective-
ness and Value, Final Evidence Report [Internet]. Boston, MA: Institute for Clinical
and Economic Review; 2018 Feb [cited 2022 Dec 7]. Available from: https://
icer.org/wp-content/uploads/2020/10/MWCEPAC_VORETIGENE_FINAL_
EVIDENCE_REPORT_02142018.pdf

3. Abrantes-Metz RM, Adams C, Metz AD. Pharmaceutical development phases: a
duration analysis. J Pharm Finance Econ Policy. 2005;14:19–42.

C.H. Wong et al.

771

Gene Therapy (2023) 30:761 – 773

https://icer.org/wp-content/uploads/2020/10/ICER_SMA_Final_Evidence_Report_052419.pdf
https://icer.org/wp-content/uploads/2020/10/ICER_SMA_Final_Evidence_Report_052419.pdf
https://icer.org/wp-content/uploads/2020/10/MWCEPAC_VORETIGENE_FINAL_EVIDENCE_REPORT_02142018.pdf
https://icer.org/wp-content/uploads/2020/10/MWCEPAC_VORETIGENE_FINAL_EVIDENCE_REPORT_02142018.pdf
https://icer.org/wp-content/uploads/2020/10/MWCEPAC_VORETIGENE_FINAL_EVIDENCE_REPORT_02142018.pdf


4. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry:
new estimates of R&D costs. J Health Econ. 2016;47:20–33.

5. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related
parameters. Biostatistics. 2019;20:273–86.

6. Guzman G. New Data Show Income Increased in 14 States and 10 of the Largest
Metros [Internet]. United States Census Bureau. 2019 [cited 2022 Dec 7]. Available
from: https://www.census.gov/library/stories/2019/09/us-median-household-
income-up-in-2018-from-2017.html

7. Chambers JD, Panzer AD, Kim DD, Margaretos NM, Neumann PJ. Variation in US
private health plans’ coverage of orphan drugs. Am J Manag Care.
2019;25:508–12.

8. Thomas S. How are insurers treating the $2M drug, onasemnogene abeparvovec-
xioi ? [Internet]. Policy & Medicine. 7. Available from: https://
www.policymed.com/2019/10/how-are-insurers-treating-the-2m-drug-
zolgensma.html.

9. Jennifer T, Kendal O, Damico A. Key facts about the uninsured population
[Internet]. Kaiser Family Foundation. Kaiser Family Foundation; 2020 [cited 2022
Dec 7]. Available from: https://www.kff.org/uninsured/issue-brief/key-facts-about-
the-uninsured-population/

10. Collins SR, Bhupal HK, Doty MM. Health insurance coverage eight years after the
ACA: fewer uninsured Americans and shorter coverage gaps, but more under-
insured. The Commonwealth Fund Issue briefs. February 7, 2019. Available from:
https://www.commonwealthfund.org/publications/issue-briefs/2019/feb/health-
insurance-coverage-eight-years-after-aca

11. Quinn C, Young C, Thomas J, Trusheim M, NEWDIGS MIT. Estimating the clinical
pipeline of cell and gene therapies and their potential economic impact on the
US healthcare system. Value Health. 2019;22:621–6. FoCUS Writing Group

12. Tozzi J. Employers fear squeeze from genetic cures that cost millions, September
2019. Bloomberg News Agency [Internet]. 2019 Sep;04–10. Available from:
https://www.bloomberg.com/news/articles/2019-09-11/employers-fear-squeeze-
from-genetic-cures-that-cost-millions?leadSource=uverify%20wall

13. Auerbach DI, Kellermann AL. A decade of health care cost growth has wiped out
real income gains for an average US family. Health Aff (Millwood).
2011;30:1630–6.

14. FDA. Expanded Access | Information for Industry [Internet]. 2019. Available from:
https://www.fda.gov/news-events/expanded-access/expanded-access-
information-industry

15. Jarow JP, Lemery S, Bugin K, Khozin S, Moscicki R. Expanded access of investi-
gational drugs: the experience of the center of drug evaluation and research over
a 10-year period. Ther Innov Regul. Sci. 2016;50:705–9.

16. Ann Meeker O, Anthony FA, Caitilin H, Jessica Z. Global approaches to drug
development: when Ex-Us Clinical Data Can Support US Drug Approvals [Inter-
net]. IQVIA White Paper. 2019. Available from: https://www.iqvia.com/library/
white-papers/global-approaches-to-drug-development

17. MIT Laboratory for Financial Engineering. Estimates of Clinical Trial Probabilities
of Success (PoS) [Internet]. Project ALPHA. 2019. Available from: https://
projectalpha.mit.edu/pos/

18. U.S. Food and Drug AdministrationFood US, Administration D. CFR - Code of
Federal Regulations Title 21 [Internet]. 2019. Available from: https://
www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=314.101

19. US Food and Drug AdministrationFood US, Administration D. Step 4: FDA Drug
Review [Internet]. 2018. Available from: https://www.fda.gov/patients/drug-
development-process/step-4-fda-drug-review

20. U.S. Census Bureau. U.S. Census Bureau QuickFacts: United States [Internet]. 2019.
Available from: https://www.census.gov/quickfacts/fact/table/US/PST045219

21. Neumann PJ, Cohen JT, Weinstein MC. Updating cost-effectiveness—the curious
resilience of the $50,000-per-QALY threshold. N Engl J Med [Internet].
2014;371:796–7. https://doi.org/10.1056/NEJMp1405158

22. Council CEPA. ICER reports on spinal muscular atrophy and CVD therapies.
PharmacoEcon Outcomes News. 2019;823:1–9.

23. Miller J, Humer C. Novartis $2 million gene therapy for rare disorder is world’s
most expensive drug. Reuters Healthcare & Pharma [Internet]. 2019 May 24 [cited
2022 Dec 7]; Available from: https://www.reuters.com/article/us-novartis-
genetherapy/novartis-2-million-gene-therapy-for-rare-disorder-is-worlds-most-
expensive-drug-idUSKCN1SU1ZP

24. Tirrell MA. US drugmaker offers to cure rare blindness for $850,000 [Internet].
CNBC. 2018 Available from: https://www.cnbc.com/2018/01/03/spark-
therapeutics-luxturna-gene-therapy-will-cost-about-850000.html

25. Andrews M Staggering Prices Slow Insurers’ Coverage Of CAR-T Cancer Therapy
[Internet]. Kaiser Health News. Kaiser Health News; 2018 [cited 2022 Dec 7].
Available from: https://khn.org/news/staggering-prices-slow-insurers-coverage-
of-car-t-cancer-therapy/

26. Kaiser Family Foundation. Medicaid State Fact Sheets [Internet]. Kaiser Family
Foundation. 2022 [cited 2022 Dec 7]. Available from: https://www.kff.org/
interactive/medicaid-state-fact-sheets/

27. Cook K, Forbes SP, Adamski K, Ma JJ, Chawla A, Garrison LP Jr. Assessing the
potential cost-effectiveness of a gene therapy for the treatment of hemophilia A.
J Med Econ. 2020;23:501–12.

28. Sarpatwari A, DiBello J, Zakarian M, Najafzadeh M, Kesselheim AS. Competition
and price among brand-name drugs in the same class: a systematic review of the
evidence. PLoS Med. 2019;16:e1002872.

29. Gelijns AC, Halm EA. The Diffusion of New Technology: Costs and Benefits to
Health Care. In: The Changing Economics of Medical Technology. National Aca-
demies Press (US); 1991.

30. Institute for Clinical and Economic Review E. ICER’s 2020–2023 Update: Value
Assessment Framework [Internet]. Institute for Clinical and Economic Review.
2020 [cited 2022 Dec 7]. Available from: https://icer-review.org/material/2020-
value-assessment-framework-final-framework/

31. Park J, Look KA. Health care expenditure burden of cancer care in the United
States. Inq J Health Care Organ Provis Financ. 2019;56:0046958019880696.

32. Congressional Budget Office. The budget and economic outlook: 2019 to 2029.
Congress of the United States, Congressional Budget Office. Washington, DC;
2019.

33. Centers for Medicare & Medicaid Services. NHE Fact Sheet [Internet]. CMS.gov.
[cited 2022 Dec 7]. Available from: https://www.cms.gov/Research-Statistics-Data-
and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-
Fact-Sheet

34. Brennan TA, Wilson JM. The special case of gene therapy pricing. Nat Biotechnol.
2014;32:874–6.

35. Montazerhodjat V, Weinstock D, Lo AW. Buying cures vs. renting health: financing
healthcare via consumer loans. Sci Transl Med. 2016;8:327ps6.

36. Cigna. Embarc benefit protection program. [Internet]. [cited 2022 Dec 7]. Avail-
able from: https://www.cigna.com/employers/cost-control/embarc-benefit-
protection

37. Barlow JF, Yang M, Teagarden JR. Are payers ready, willing, and able to provide
access to new durable gene therapies? Value Health. 2019;22:642–7.

38. U.S. Health and Human Services, Center for Medicare and Medicaid Innovation.
‘Lowering Prescription Drug Costs for Americans, Response to President Biden’s
Executive Order.’ February 2023. Available from: https://www.cms.gov/priorities/
innovation/data-and-reports/2023/eo-rx-drug-cost-response-report

ACKNOWLEDGEMENTS
We thank Sarah Antiles and Nora Yang for assisting with the preparation of the data.
We also thank Jon Campbell, Charles Gerrits, Kathy Gooch, Stacey Kowal, Donald
Nichols, Mark Trusheim, Karen Tsai, and Ed Tuttle for helpful comments, and Gabriela
Gracia and Jayna Cummings for editorial support. The views and opinions expressed
in this article are those of the authors only and do not necessarily represent the views
and opinions of any other organizations, any of their affiliates or employees, or any of
the individuals acknowledged above. Funding support from the MIT Laboratory for
Financial Engineering is gratefully acknowledged, but no direct funding was received
for this study and no funding bodies had any role in study design, data collection and
analysis, decision to publish, or preparation of this manuscript. The authors were
personally salaried by their institutions during the period of writing (though no
specific salary was set aside or given for the writing of this manuscript). More detailed
conflict of interest disclosures are provided after the Conclusion section of the main
text. Funding: RMC’s research is funded by grants from the American Cancer Society,
the National Cancer Institute, the Leukemia & Lymphoma Society and Arnold
Ventures. None of these granting agencies funded her efforts in this work. RMC was
also a special economic consultant to the US Food and Drug Administration’s Office
of Generic Drugs and is currently a voting committee member of ICER. None of these
organizations had any role in the completion of this project, nor RMC’s effort on this
project. AL’s research is funded by the MIT Laboratory for Financial Engineering, as
well as grants from the Rockefeller Foundation and the Schmidt Futures Foundation.
None of these organizations had any role in the completion of this project, nor AL’s
effort on this project.

AUTHOR CONTRIBUTIONS
All authors participated in the planning of analyses, interpretation of results and
drafting of the manuscript. All authors gave final approval of the manuscript for
publication. AL, CW, JG and RMC are responsible for the original conception of the
study and its execution. CW, NW, DL performed analyses presented in the manuscript
under the supervision of AL, RMC and JG.

COMPETING INTERESTS
CW, DL, and NW report no conflicts. RMC has no conflicts of interest to declare. JG
reports no conflicts. JG is a consultant for both the insurer Aetna, Inc. and for the

C.H. Wong et al.

772

Gene Therapy (2023) 30:761 – 773

https://www.census.gov/library/stories/2019/09/us-median-household-income-up-in-2018-from-2017.html
https://www.census.gov/library/stories/2019/09/us-median-household-income-up-in-2018-from-2017.html
https://www.policymed.com/2019/10/how-are-insurers-treating-the-2m-drug-zolgensma.html
https://www.policymed.com/2019/10/how-are-insurers-treating-the-2m-drug-zolgensma.html
https://www.policymed.com/2019/10/how-are-insurers-treating-the-2m-drug-zolgensma.html
https://www.kff.org/uninsured/issue-brief/key-facts-about-the-uninsured-population/
https://www.kff.org/uninsured/issue-brief/key-facts-about-the-uninsured-population/
https://www.commonwealthfund.org/publications/issue-briefs/2019/feb/health-insurance-coverage-eight-years-after-aca
https://www.commonwealthfund.org/publications/issue-briefs/2019/feb/health-insurance-coverage-eight-years-after-aca
https://www.bloomberg.com/news/articles/2019-09-11/employers-fear-squeeze-from-genetic-cures-that-cost-millions?leadSource=uverify%20wall
https://www.bloomberg.com/news/articles/2019-09-11/employers-fear-squeeze-from-genetic-cures-that-cost-millions?leadSource=uverify%20wall
https://www.fda.gov/news-events/expanded-access/expanded-access-information-industry
https://www.fda.gov/news-events/expanded-access/expanded-access-information-industry
https://www.iqvia.com/library/white-papers/global-approaches-to-drug-development
https://www.iqvia.com/library/white-papers/global-approaches-to-drug-development
https://projectalpha.mit.edu/pos/
https://projectalpha.mit.edu/pos/
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=314.101
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=314.101
https://www.fda.gov/patients/drug-development-process/step-4-fda-drug-review
https://www.fda.gov/patients/drug-development-process/step-4-fda-drug-review
https://www.census.gov/quickfacts/fact/table/US/PST045219
https://doi.org/10.1056/NEJMp1405158
https://www.reuters.com/article/us-novartis-genetherapy/novartis-2-million-gene-therapy-for-rare-disorder-is-worlds-most-expensive-drug-idUSKCN1SU1ZP
https://www.reuters.com/article/us-novartis-genetherapy/novartis-2-million-gene-therapy-for-rare-disorder-is-worlds-most-expensive-drug-idUSKCN1SU1ZP
https://www.reuters.com/article/us-novartis-genetherapy/novartis-2-million-gene-therapy-for-rare-disorder-is-worlds-most-expensive-drug-idUSKCN1SU1ZP
https://www.cnbc.com/2018/01/03/spark-therapeutics-luxturna-gene-therapy-will-cost-about-850000.html
https://www.cnbc.com/2018/01/03/spark-therapeutics-luxturna-gene-therapy-will-cost-about-850000.html
https://khn.org/news/staggering-prices-slow-insurers-coverage-of-car-t-cancer-therapy/
https://khn.org/news/staggering-prices-slow-insurers-coverage-of-car-t-cancer-therapy/
https://www.kff.org/interactive/medicaid-state-fact-sheets/
https://www.kff.org/interactive/medicaid-state-fact-sheets/
https://icer-review.org/material/2020-value-assessment-framework-final-framework/
https://icer-review.org/material/2020-value-assessment-framework-final-framework/
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet
https://www.cigna.com/employers/cost-control/embarc-benefit-protection
https://www.cigna.com/employers/cost-control/embarc-benefit-protection
https://www.cms.gov/priorities/innovation/data-and-reports/2023/eo-rx-drug-cost-response-report
https://www.cms.gov/priorities/innovation/data-and-reports/2023/eo-rx-drug-cost-response-report


biotech company Sarepta, Inc. During the most recent 6-month period JG has
received compensation from Aetna, MacMillan Publishing, and Access Health,
International. AL reports personal investments in private biotech companies, biotech
venture capital funds, and mutual funds. AL is a co-founder and partner of QLS
Advisors, a healthcare analytics and consulting company; an advisor to Apricity
Health, Aracari Bio, BrightEdge Impact Fund, Enable Medicine, Inc, FINRA, Health at
Scale, Lazard, MIT Proto Ventures, Quantile Health, Roivant Social Ventures, SalioGen
Therapeutics, Swiss Finance Institute, Thalēs, and xCures; a director of AbCellera,
Annual Reviews, Atomwise, BridgeBio Pharma, Uncommon Cures, and Vesalius.
During the most recent six-year period (beginning 2017), AL received speaking/
consulting fees, honoraria, or other forms of compensation from: AbCellera,
AlphaSimplex Group, Annual Reviews, Apricity Health, Aracari Bio, Atomwise,
Bernstein Fabozzi Jacobs Levy Award, BridgeBio, Cambridge Associates, Chicago
Mercantile Exchange, Enable Medicine, Financial Times Prize, Harvard Kennedy
School, IMF, Journal of Investment Management, Lazard, National Bank of Belgium,
New Frontier Advisors/Markowitz Award, Oppenheimer, Princeton University Press, Q
Group, QLS Advisors, Quantile Health, Research Affiliates, Roivant Sciences, SalioGen,
Swiss Finance Institute, and WW Norton.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41434-023-00419-9.

Correspondence and requests for materials should be addressed to Rena M. Conti.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

C.H. Wong et al.

773

Gene Therapy (2023) 30:761 – 773

https://doi.org/10.1038/s41434-023-00419-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The estimated annual financial impact of gene therapy in the United States
	Introduction
	Materials and methods
	Human subjects and code availability
	Summary of methods
	Gene therapies in clinical trials and associated diseases and therapeutic areas
	Probability of success estimates simulation
	Time to approval simulation
	Number of patients simulation
	Incidence and prevalence
	Treatment of patients over time simulation
	Patient penetration simulation
	Expected market pricing simulation and QALYs gained from gene therapy treatment
	Price per ∆QALY

	Sensitivity analyses

	Results
	Expected number of approvals and patients
	Expected spending
	Results of sensitivity analysis

	Discussion
	Conclusion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS
	ADDITIONAL INFORMATION




