Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep

Abstract

Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 μg/mL and 195 μg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative “vaccine” strategy for those with compromised immune systems or in possible outbreak response scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: In vitro analysis of AAV6.2FF vectors expressing mAbs MR78, MR82, and MR191.
Fig. 2: In vivo expression kinetics of vectorized MR78 and MR191 and confirmation of MARV GP binding.
Fig. 3: AAV6.2FF-MR191 is highly protective against MA-MARV challenge.
Fig. 4: Comparison of AAV6.2FF-MR78 serum human IgG concentration when administered to male versus female mice and one injection versus four injections.
Fig. 5: Findings of the ovine AAV6.2FF-MR191 long-term monitoring study.

Data availability

Data generated or analyzed during this study can be found within the published article and its supplementary files.

References

  1. MacNeil A, Rollin PE. Ebola and Marburg hemorrhagic fevers: neglected tropical diseases? PLoS Negl Trop Dis. 2012;6:e1546.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rghei AD, van Lieshout LP, Santry LA, Guilleman MM, Thomas SP, Susta L, et al. AAV Vectored Immunoprophylaxis for Filovirus Infections. Trop Med Infect Dis. 2020;5:169.

  3. Howley PM, Knipe DM, Whelan S. Fields Virology: Emerging Viruses, Lippincott Williams & Wilkins (LWW), 2020.

  4. Heymann DL, Chen L, Takemi K, Fidler DP, Tappero JW, Thomas MJ, et al. Global health security: the wider lessons from the west African Ebola virus disease epidemic. Lancet. 2015;385:1884–901.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coltart CE, Lindsey B, Ghinai I, Johnson AM, Heymann DL. The Ebola outbreak, 2013–2016: old lessons for new epidemics. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160297.

  6. Towner JS, Pourrut X, Albariño CG, Nkogue CN, Bird BH, Grard G, et al. Marburg virus infection detected in a common African bat. PLoS One. 2007;2:e764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. History of Marburg Virus Disease (MVD) Outbreaks|Marburg (Marburg Virus Disease) | CDC. In, 2022.

  8. Dulin N, Spanier A, Merino K, Hutter JN, Waterman PE, Lee C, et al. Systematic review of Marburg virus vaccine nonhuman primate studies and human clinical trials. Vaccine. 2021;39:202–8.

    Article  CAS  PubMed  Google Scholar 

  9. Dibo M, Battocchio EC, Dos Santos Souza LM, da Silva MDV, Banin-Hirata BK, Sapla MMM, et al. Antibody therapy for the control of viral diseases: an update. Curr Pharm Biotechnol. 2019;20:1108–21.

    Article  CAS  PubMed  Google Scholar 

  10. Banadyga L, Schiffman Z, He S, Qiu X. Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy. Biosaf Health. 2019;1:6–13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tshiani Mbaya O, Mukumbayi P, Mulangu S. Review: insights on current FDA-approved monoclonal antibodies against Ebola Virus Infection. Front Immunol. 2021;12:721328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fausther-Bovendo H, Kobinger G. The road to effective and accessible antibody therapies against Ebola virus. Curr Opin Virol. 2022;54:101210.

    Article  CAS  PubMed  Google Scholar 

  13. Flyak AI, Ilinykh PA, Murin CD, Garron T, Shen X, Fusco ML, et al. Mechanism of human antibody-mediated neutralization of Marburg virus. Cell. 2015;160:893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. King LB, Fusco ML, Flyak AI, Ilinykh PA, Huang K, Gunn B, et al. The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host Microbe. 2018;23:101–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brannan JM, He S, Howell KA, Prugar LI, Zhu W, Vu H, et al. Post-exposure immunotherapy for two ebolaviruses and Marburg virus in nonhuman primates. Nat Commun. 2019;10:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mire CE, Geisbert JB, Borisevich V, Fenton KA, Agans KN, Flyak AI, et al. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci Transl Med. 2017;9:384.

  17. Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY, Liu J, et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 2013;503:224–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME, et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol. 2015;182:289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP, Buckley N, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 2015;522:487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mulangu S, Dodd LE, Davey RT, Tshiani Mbaya O, Proschan M, Mukadi D, et al. A randomized, controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med. 2019;381:2293–303.

    Article  CAS  PubMed  Google Scholar 

  21. Sanders JW, Ponzio TA. Vectored immunoprophylaxis: an emerging adjunct to traditional vaccination. Trop Dis Travel Med Vaccines. 2017;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schnepp BC, Johnson PR. Vector-mediated antibody gene transfer for infectious diseases. Adv Exp Med Biol. 2015;848:149–67.

    Article  CAS  PubMed  Google Scholar 

  23. Kuzmin DA, Shutova MV, Johnston NR, Smith OP, Fedorin VV, Kukushkin YS, et al. The clinical landscape for AAV gene therapies. Nat Rev Drug Discov. 2021;20:173–4.

    Article  CAS  PubMed  Google Scholar 

  24. Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol. 2002;76:8769–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature. 2012;481:81–4.

    Article  CAS  Google Scholar 

  26. Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS, et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med. 2014;20:296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balazs AB, Bloom JD, Hong CM, Rao DS, Baltimore D. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat Biotechnol. 2013;31:647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Limberis MP, Adam VS, Wong G, Gren J, Kobasa D, Ross TM, et al. Intranasal antibody gene transfer in mice and ferrets elicits broad protection against pandemic influenza. Sci Transl Med. 2013;5:187ra72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, et al. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. J Infect Dis. 2018;217:916–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Robert MA, Nassoury N, Chahal PS, Venne MH, Racine T, Qiu X, et al. Gene Transfer of ZMapp Antibodies Mediated by Recombinant Adeno-Associated Virus Protects Against Ebola Infections. Hum Gene Ther. 2018;29:452–66.

    Article  CAS  PubMed  Google Scholar 

  31. Deal C, Balazs AB, Espinosa DA, Zavala F, Baltimore D, Ketner G. Vectored antibody gene delivery protects against Plasmodium falciparum sporozoite challenge in mice. Proc Natl Acad Sci USA. 2014;111:12528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M, et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol. 2005;23:584–90.

    Article  CAS  PubMed  Google Scholar 

  33. Rghei AD, Stevens BAY, Thomas SP, Yates JGE, McLeod BM, Karimi K, et al. Production of Adeno-Associated Virus Vectors in Cell Stacks for Preclinical Studies in Large Animal Models. J Vis Exp. 2021;172:e62727.

  34. van Lieshout LP, Domm JM, Wootton SK. AAV-mediated gene delivery to the Lung. Methods Mol Biol. 2019;1950:361–72.

    Article  PubMed  CAS  Google Scholar 

  35. Guilleman MM, Stevens BAY, Van Lieshout LP, Rghei AD, Pei Y, Santry LA, et al. AAV-mediated delivery of actoxumab and bezlotoxumab results in serum and mucosal antibody concentrations that provide protection from C. difficile toxin challenge. Gene Ther. 2021 https://doi.org/10.1038/s41434-021-00236-y.

  36. Mingozzi F, Meulenberg JJ, Hui DJ, Basner-Tschakarjan E, Hasbrouck NC, Edmonson SA, et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood. 2009;114:2077–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101:2963–72.

    Article  CAS  PubMed  Google Scholar 

  38. Katz MG, Swain JD, White JD, Low D, Stedman H, Bridges CR. Cardiac gene therapy: optimization of gene delivery techniques in vivo. Hum Gene Ther. 2010;21:371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation. 1994;90:2414–24.

    Article  CAS  PubMed  Google Scholar 

  40. Hunanyan AS, Kantor B, Puranam RS, Elliott C, McCall A, Dhindsa J, et al. Adeno-Associated Virus-Mediated Gene Therapy in the Mashlool, Atp1a3 Mashl/+, Mouse Model of Alternating Hemiplegia of Childhood. Hum Gene Ther. 2021;32:405–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mayer B, Zolnai A, Frenyó LV, Jancsik V, Szentirmay Z, Hammarström L, et al. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology. 2002;107:288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kacskovics I, Kis Z, Mayer B, West AP, Tiangco NE, Tilahun M, et al. FcRn mediates elongated serum half-life of human IgG in cattle. Int Immunol. 2006;18:525–36.

    Article  CAS  PubMed  Google Scholar 

  43. WHO. Prioritizing diseases for research and development in emergency contexts. https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts. Accessed 29 Jan 2020.

  44. Guenzel AJ, Collard R, Kraus JP, Matern D, Barry MA. Long-term sex-biased correction of circulating propionic acidemia disease markers by adeno-associated virus vectors. Hum Gene Ther. 2015;26:153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davidoff AM, Ng CY, Zhou J, Spence Y, Nathwani AC. Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood. 2003;102:480–8.

    Article  CAS  PubMed  Google Scholar 

  46. Maguire CA, Crommentuijn MH, Mu D, Hudry E, Serrano-Pozo A, Hyman BT, et al. Mouse gender influences brain transduction by intravascularly administered AAV9. Mol Ther. 2013;21:1470–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zou C, Vercauteren KOA, Michailidis E, Kabbani M, Zoluthkin I, Quirk C, et al. Experimental variables that affect human Hepatocyte AAV Transduction in Liver Chimeric Mice. Mol Ther Methods Clin Dev. 2020;18:189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herzog RW, Fields PA, Arruda VR, Brubaker JO, Armstrong E, McClintock D, et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum Gene Ther. 2002;13:1281–91.

    Article  CAS  PubMed  Google Scholar 

  49. Priddy FH, Lewis DJM, Gelderblom HC, Hassanin H, Streatfield C, LaBranche C, et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV. 2019;6:e230–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000;24:257–61.

    Article  CAS  PubMed  Google Scholar 

  51. Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT, et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci USA. 2009;106:16363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hashiguchi T, Fusco ML, Bornholdt ZA, Lee JE, Flyak AI, Matsuoka R, et al. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell. 2015;160:904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rghei DA, van Lieshout LP, McLeod MB, Pei Y, Lopes JA, Zielinska N, et al. Safety and Tolerability of the Adeno-Associated Virus Vector, AAV6.2FF, Expressing a Monoclonal Antibody in Murine and Ovine Animal Models. Biomedicines. 2021;9:1186.

  54. Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, Yuste E, et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med. 2009;15:901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fuchs SP, Martinez-Navio JM, Piatak M, Lifson JD, Gao G, Desrosiers RC. AAV-delivered antibody mediates significant protective effects against SIVmac239 challenge in the absence of neutralizing activity. PLoS Pathog. 2015;11:e1005090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Saunders KO, Wang L, Joyce MG, Yang ZY, Balazs AB, Cheng C, et al. Broadly neutralizing human immunodeficiency virus type 1 antibody Gene Transfer Protects nonhuman primates from Mucosal Simian-Human Immunodeficiency Virus Infection. J Virol. 2015;89:8334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez-Navio JM, Fuchs SP, Pedreño-López S, Rakasz EG, Gao G, Desrosiers RC. Host anti-antibody responses following Adeno-associated Virus-mediated delivery of antibodies against HIV and SIV in Rhesus Monkeys. Mol Ther. 2016;24:76–86.

    Article  CAS  PubMed  Google Scholar 

  58. Gardner MR, Fetzer I, Kattenhorn LM, Davis-Gardner ME, Zhou AS, Alfant B, et al. Anti-drug antibody responses impair Prophylaxis mediated by AAV-delivered HIV-1 broadly neutralizing antibodies. Mol Ther. 2019;27:650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martinez-Navio JM, Fuchs SP, Mendes DE, Rakasz EG, Gao G, Lifson JD, et al. Long-term delivery of an anti-SIV monoclonal antibody with AAV. Front Immunol. 2020;11:449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinez-Navio JM, Fuchs SP, Pantry SN, Lauer WA, Duggan NN, Keele BF, et al. Adeno-associated virus delivery of Anti-HIV Monoclonal antibodies can drive long-term Virologic Suppression. Immunity. 2019;50:567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liberatore RA, Ho DD. The Miami Monkey: A Sunny Alternative to the Berlin Patient. Immunity. 2019;50:537–9.

    Article  CAS  PubMed  Google Scholar 

  62. Welles HC, Jennewein MF, Mason RD, Narpala S, Wang L, Cheng C, et al. Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathog. 2018;14:e1007395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol. 2012;30:423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Phelps M, Balazs AB. Contribution to HIV prevention and treatment by antibody-mediated effector function and advances in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Front Immunol. 2021;12:734304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all those who were involved in the care of the animals used these studies.

Funding

This work was supported by an OMAFRA Alliance grant (UG-T2-2020-101105) and MITACS Accelerate grant (IT18741) to SKW. ADR was the recipient of an OVC PhD Scholarship and an Ontario Graduate Scholarship. This work was also supported, in part, by the Public Health Agency of Canada (PHAC).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ADR, LPvL, XQ, LB and SKW; methodology: ADR, LPvL, WC, SH, KT, JAL, NZ, EMB, ESBC, JAM, MMG, PCH, LS; writing—original draft preparation: ADR and LPvL; review and editing: JL, WC, BT, BWB, LB, and SKW; supervision: LB and SKW; funding acquisition: LB and SKW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sarah K. Wootton.

Ethics declarations

Competing interests

LPvL and SKW are inventors on a US patent for the AAV6.2FF capsid. This patent (US20190216949) is licensed to Avamab Pharma Inc., where BT, LPvL and SKW are co-founders and BT serves as an executive. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Ethical approval

Experiments involving animals were approved by the University of Guelph Animal Care Committee (AUP# 3827) or the Canadian Science Centre for Human and Animal Health Animal Care Committee (H-16-011) according to the guidelines set forth by the Canadian Council on Animal Care.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rghei, A.D., van Lieshout, L.P., Cao, W. et al. Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep. Gene Ther (2022). https://doi.org/10.1038/s41434-022-00361-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-022-00361-2

Search

Quick links