Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

rAAV-mediated over-expression of acid ceramidase prevents retinopathy in a mouse model of Farber lipogranulomatosis

Abstract

Farber disease (FD) is a rare monogenic lysosomal storage disorder caused by mutations in ASAH1 that results in a deficiency of acid ceramidase (ACDase) activity and the abnormal systemic accumulation of ceramide species, leading to multi-system organ failure involving neurological decline and retinopathy. Here we describe the effects of rAAV-mediated ASAH1 over-expression on the progression of retinopathy in a mouse model of FD (Asah1P361R/P361R) and its littermate controls (Asah1+/+ and Asah1+/P361R). Using a combination of non-invasive multimodal imaging, electrophysiology, post-mortem histology and mass spectrometry we demonstrate that ASAH1 over-expression significantly reduces central retinal thickening, ceramide accumulation, macrophage activation and limits fundus hyper-reflectivity and auto-fluorescence in FD mice, indicating rAAV-mediated over-expression of biologically active ACDase protein is able to rescue the anatomical retinal phenotype of Farber disease. Unexpectedly, ACDase over-expression in Asah1+/+ and Asah1+/P361R control eyes was observed to induce abnormal fundus hyper-reflectivity, auto-fluorescence and retinal thickening that closely resembles a FD phenotype. This study represents the first evidence of a gene therapy for Farber disease-related retinopathy. Importantly, the described gene therapy approach could be used to preserve vision in FD patients synergistically with broader enzyme replacement strategies aimed at preserving life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACDase expression and activity assay following in vivo or in vitro sc-rAAV2/2[MAX].ASAH1 treatment.
Fig. 2: cSLO imaging of sc-rAAV2/2[MAX].ASAH1 and PBS injected eyes.
Fig. 3: OCT imaging of sc-rAAV2/2[MAX].ASAH1 and PBS injected eyes.
Fig. 4: Histochemistry and immunofluorescence on paraffin sections of Asah1P361R/P361R (MUT) mouse eye at PW 8-9.
Fig. 5: ERG analysis of sc-rAAV2/2[MAX].ASAH1 and PBS injected eyes.
Fig. 6: Ceramide levels are reduced following sc-rAAV2/2[MAX].ASAH1 treatment.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Yu FPS, Amintas S, Levade T, Medin JA. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J Rare Dis. 2018;13:1–19.

    Article  Google Scholar 

  2. Sugita M, Dulaney JT, Moser HW. Ceramidase deficiency in Farber’s disease (Lipogranulomatosis). Science. 1972;178:1100–2.

    Article  CAS  PubMed  Google Scholar 

  3. Koch J, Gärtner S, Li C, Quintern LE, Bernardo K, Levran O. et al. Molecular cloning and characterization of a full-length complementary DNAencoding human acid ceramidase: Identification of the first molecular lesion causing farber disease. J Biol Chem. 1996;271:33110–5.

    Article  CAS  PubMed  Google Scholar 

  4. Sands MS. Farber disease: Understanding a fatal childhood disorder and dissecting ceramide biology. EMBO Mol. Med. 2013;5:799–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zielonka M, Garbade SF, Kölker S, Hoffmann GF, Ries M. A cross-sectional quantitative analysis of the natural history of Farber disease: An ultra-orphan condition with rheumatologic and neurological cardinal disease features. Genet. Med. 2018;20:524–30.

    Article  PubMed  Google Scholar 

  6. Zetterström R. Disseminated Lipogranulomatosis (Farber’s Disease). Acta Paediatr. 1958;47:501–10.

    Article  Google Scholar 

  7. Tanaka T, Takahashi K, Hakozaki H, Kimoto H, Suzuki Y. Farber’s Disease (Disseminated Lipogranulomatosis) - A Pathological, Histochemical and Ultrastructural Study-. Pathol. Int. 1979;29:135–55.

    Article  CAS  Google Scholar 

  8. Zarbin MA, Green WR, Moser AB, Tiffany C. Increased Levels of Ceramide in the Retina of a Patient With Farber’s Disease. Arch. Ophthalmol. 1988;106:1163–1163.

    Article  CAS  PubMed  Google Scholar 

  9. Alamri AS, Alshowaeir DA, AlFaiz AA, Mousawi AI, Mahmoud FH, Alhashim AA. et al. Optic Nerve Involvement in Farber Lipogranulomatosis: Expanding the Phenotypic Spectrum. J Neuro-Ophthalmol. 2019;39:391–3.

    Article  Google Scholar 

  10. Alayoubi AM, Wang JCM, Au BCY, Carpentier S, Garcia V, Dworski S, et al. Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol Med. 2013;5:827–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dworski S, Berger A, Furlonger C, Moreau JM, Yoshimitsu M, Trentadue J, et al. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica. 2015;100:e162–e165.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yu FPS, Sajdak BS, Sikora J, Salmon AE, Nagree MS, Gurka J, et al. Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment. Am J Pathol. 2019;189:320–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barak A, Goldkorn T, Morse LS. Laser induces apoptosis and ceramide production in human retinal pigment epithelial cells. Investig Ophthalmol Vis Sci. 2005;46:2587–91.

    Article  Google Scholar 

  14. Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: An overview and current perspectives. Biochim et Biophys Acta Mol Cell Biol Lipids. 2002;1585:114–25.

    Article  CAS  Google Scholar 

  15. Ranty ML, Carpentier S, Cournot M, Rico-Lattes I, Malecaze F, Levade T, et al. Ceramide production associated with retinal apoptosis after retinal detachment. Graefe’s Arch Clin Exp Ophthalmol. 2009;247:215–24.

    Article  CAS  Google Scholar 

  16. Lou H, Kang D, Yang Q, Lian C, Zhang C, Li Z, et al. Erythropoietin Protects Retina Against Ceramide 2-Induced Damage in Rat. Curr Mol Med. 2018;17:699–706.

    Article  Google Scholar 

  17. Strettoi E, Gargini C, Sala G, Piano I, Gasco P, Ghidoni R. Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 2010;107:18706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simón MV, Spalm Prado, Vera FH, Rotstein MS. N. P. Sphingolipids as emerging mediators in retina degeneration. Front Cell Neurosci. 2019;13:246.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haddad S, Chen CA, Santangelo SL, Seddon JM. The Genetics of Age-Related Macular Degeneration: A Review of Progress to Date. Surv Ophthalmol. 2006;51:316–63.

    Article  PubMed  Google Scholar 

  20. He X, Schuchman EH. Ceramide and Ischemia/Reperfusion Injury. J Lipids 2018;2018:1–11.

  21. Sanvicens N, Cotter TG. Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem. 2006;98:1432–44.

    Article  CAS  PubMed  Google Scholar 

  22. Sugano E, Edwards G, Saha S, Wilmott LA, Grambergs RC, Mondal K, et al. Overexpression of acid ceramidase (ASAH1) protects retinal cells (ARPE19) from oxidative stress. J Lipid Res. 2019;60:30–43.

    Article  CAS  PubMed  Google Scholar 

  23. Opreanu M, Lydic TA, Reid GE, McSorley KM, Esselman WJ, Busik JV. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Investig Ophthalmo Vis Sci. 2010;51:3253–63.

    Article  Google Scholar 

  24. Acharya U, Patel S, Koundakjian E, Nagashima K, Han X, Acharya JK. Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science. 2003;299:1740–3.

    Article  CAS  PubMed  Google Scholar 

  25. Fan J, Wu BX, Crosson CE. Suppression of acid sphingomyelinase protects the retina from ischemic injury. Investig Ophthalmol Vis Sci. 2016;57:4476–84.

    Article  CAS  Google Scholar 

  26. Stiles M, Qi H, Sun E, Tan J, Porter H, Allegood J, et al. Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J Lipid Res. 2016;57:818–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein R, Klein BEK, Jensen SC, Cruickshanks KJ, Lee KE, Danforth L, et al. Medication use and the 5-year incidence of early age-related maculopathy: The Beaver Dam eye study. Arch Ophthalmol. 2001;119:1354–9.

    Article  CAS  PubMed  Google Scholar 

  28. He X, Dworski S, Zhu C, DeAngelis V, Solyom A, Medin JA, et al. Enzyme replacement therapy for Farber disease: Proof-of-concept studies in cells and mice. BBA Clin. 2017;7:85–96.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garbade SF, Zielonka M, Mechler K, Kölker S, Hoffmann GF, Staufner C, et al. FDA orphan drug designations for lysosomal storage disorders - A cross-sectional analysis. PLoS One. 2020;15:e0230898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lachmann RH. Enzyme replacement therapy for lysosomal storage diseases. Curr Opin Pediatr. 2011;23:588–93.

    Article  CAS  PubMed  Google Scholar 

  31. Brooks DA, Kakavanos R, Hopwood JJ. Significance of immune response to enzyme-replacement therapy for patients with a lysosomal storage disorder. Trend Mol Med. 2003;9:450–3.

    Article  CAS  Google Scholar 

  32. Concolino D, Deodato F, Parini R. Enzyme replacement therapy: Efficacy and limitations. Ital J Pediatr. 2018;44:117–26.

    Article  Google Scholar 

  33. Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21:3–9.

    Article  Google Scholar 

  34. Rastall DPW, Amalfitano A. Recent advances in gene therapy for lysosomal storage disorders. Appl Clin Genet. 2015;8:157–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. Preparation of PCR-quality mouse genomic dna with hot sodium hydroxide and tris (HotSHOT). Biotechniques. 2000;29:52–54.

    Article  CAS  PubMed  Google Scholar 

  36. Reid CA, Lipinski DM. Small and micro-scale recombinant adeno-associated virus production and purification for ocular gene therapy applications. Ret Gene Ther. 2018;1715:19–31.

    Article  CAS  Google Scholar 

  37. McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther. 2008;16:1648–56.

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Benitez BA, Nagree MS, Dearborn JT, Jiang X, Guzman MA, et al. Genetic ablation of acid ceramidase in Krabbe disease confirms the psychosine hypothesis and identifies a new therapeutic target. Proc Natl Acad Sci USA 2019;116:20097–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reid CA, Ertel KJ, Lipinski DM. Improvement of Photoreceptor Targeting via Intravitreal Delivery in Mouse and Human Retina Using Combinatory rAAV2 Capsid Mutant Vectors. Investg Ophthalmol Vis Sci. 2017;58:6429–39.

    Article  CAS  Google Scholar 

  40. Piedra J, Ontiveros M, Miravet S, Penalva C, Monfar M, Chillon M. Development of a rapid, robust, and universal PicoGreen-based method to titer adeno-associated vectors. Hum Gene Ther Methods. 2015;26:35–42.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Sajdak BS, Merriman DK, McCall MA, Carroll J, Lipinski. Daniel M. Electroretinogram of the cone-dominant thirteen-lined ground squirrel during Euthermia and Hibernation in comparison with the rod-dominant Brown Norway rat. Investig Ophthalmol Vis Sci. 2020;61:6–6.

    CAS  Google Scholar 

  42. Latendresse JR, Warbrittion AR, Jonassen H, Creasy DM. Fixation of testes and eyes using a modified Davidson’s fluid: Comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol. 2002;30:524–33.

    Article  PubMed  Google Scholar 

  43. Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc. 2008;5:pdb–prot4986.

  44. Wolman M. The lipids stained by the periodic acid-schiff technic. Biotech Histochem. 1956;31:241–5.

    CAS  Google Scholar 

  45. Brannigan JA, Dodson G, Duggleby HJ, Moody PCE, Smith JL, Tomchick DR, et al. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature. 1995;378:413–6.

    Google Scholar 

  46. Shtraizent N, Eliyahu E, Park JH, He X, Shalgi R, Schuchman EH. Autoproteolytic cleavage and activation of human acid ceramidase. J Biol Chem. 2008;283:11253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abreu Velez AM, Upegui Zapata YA, Howard MS. Periodic acid-schiff staining parallels the immunoreactivity seen by direct immunofluorescence in autoimmune skin diseases. N. Am J Med Sci. 2016;8:151–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Winchester B. Lysosomal metabolism of glycoproteins. Glycobiology. 2005;15:1R–15R.

    Article  CAS  PubMed  Google Scholar 

  49. Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E. Glycogen metabolism in humans. BBA Clin. 2016;5:85–100.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sandhoff K, Kolter T. Topology of glycosphingolipid degradation. Trends Cell Biol. 1996;6:98–103.

    Article  CAS  PubMed  Google Scholar 

  51. Chalfant CE, Kishikawal K, Mumby MC, Kamibayashi C, Bielawska A, Hannun YA. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem. 1999;274:20313–7.

    Article  CAS  PubMed  Google Scholar 

  52. Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J, et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med. 2013;5:105–21.

    Article  CAS  PubMed  Google Scholar 

  53. Walvoort HC, Dormans JAMA, van den Ingh TSGAM. Comparative pathology of the canine model of glycogen storage disease type II (Pompe’s disease). J Inherit Metab Dis. 1985;8:38–46.

    Article  CAS  PubMed  Google Scholar 

  54. Pena LDM, Proia AD, Kishnani PS. Postmortem findings and clinical correlates in individuals with infantile-Onset pompe disease. JIMD Rep. 2015;23:45–54.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Solovyeva VV, Shaimardanova AA, Chulpanova DS, Kitaeva KV, Chakrabarti L, Rizvanov, AA. New approaches to Tay-Sachs disease therapy. Front Physiol. 2018;9:1663.

  56. Baris HN, Cohen IJ, Mistry PK. Gaucher disease: The metabolic defect, pathophysiology, phenotypes and natural history. Pediatr Endocrinol Rev. 2014;12:72–81.

    PubMed  PubMed Central  Google Scholar 

  57. Allen MJ, Myer BJ, Khokher AM, Rushton N, Cox TM. Pro-inflammatory cytokines and the pathogenesis of Gaucher’s disease: Increased release of interleukin-6 and interleukin-10. QJM Mon J Assoc Phys. 1997;90:19–25.

    CAS  Google Scholar 

  58. Barak V, Acker M, Nisman B, Kalickman I, Abrahamov A, Zimran A, et al. Cytokines in Gaucher’s disease. Eur Cytokine Netw. 1999;10:205–10.

    CAS  PubMed  Google Scholar 

  59. Echevarria FD, Formichella CR, Sappington RM. Interleukin-6 deficiency attenuates retinal ganglion cell axonopathy and glaucoma-related vision loss. Front Neurosci. 2017;11:318.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front Immunol. 2019;10:1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Okino N, He X, Gatt S, Sandhoff K, Ito M, Schuchman EH. The reverse activity of human acid ceramidase. J Biol Chem. 2003;278:29948–53.

    Article  CAS  PubMed  Google Scholar 

  62. Sikora J, Dworski S, Jones EE, Kamani MA, Micsenyi MC, Sawada T, et al. Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities. Am J Pathol. 2017;187:864–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krishnamurthy K, Dasgupta S, Bieberich E. Development and characterization of a novel anti-ceramide antibody. J. Lipid Res. 2007;48:968–75.

    Article  CAS  PubMed  Google Scholar 

  64. Asanad S, Karanjia R. Full-Field Electroretinogram. Electrophysiology of Vision. 2022;4:1–64.

  65. Almárcegui C. Pattern electroretinogram in anterior ischemic optic neuropathy. Rev Neurol. 2001;32:18–21.

    PubMed  Google Scholar 

  66. Froehlich J, Kaufman DI. Use of pattern electroretinography to differentiate acute optic neuritis from acute anterior ischemic optic neuropathy. Electroencephalogr Clin Neurophysiol Evoked Potentials. 1994;92:480–6.

    Article  CAS  PubMed  Google Scholar 

  67. Bach M, Unsoeld AS, Philippin H, Staubach F, Maier P, Walter HS, et al. Pattern ERG as an early glaucoma indicator in ocular hypertension: A long-term, prospective study. Investig Ophthalmol Vis Sci. 2006;47:4881–7.

    Article  Google Scholar 

  68. Giugliani R, Vairo F, Kubaski F, Poswar F, Riegel M, Baldo G, et al. J. A. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS. Lancet Child Adolescent Health. 2018;2:56–68.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Lisa King, Christine Skumatz, Joseph Thulin, and the Biomedical Resource Center at MCW for their help with animal care, in addition to Christine Duris, Qiuhui Yang, and the Children’s Research Institute histology core of MCW for their contributions to histological studies. We thank Benyapa Khowpinitchai and Alexander Salmon for their help on OCT data measurement and analysis. We thank Xuntian Jiang and the Metabolomics Core at Washington University (St. Louis, MO) for assistance with sphingolipid quantification.

Funding

This study was supported through intramural funds available to DML and JAM.

Author information

Authors and Affiliations

Authors

Contributions

HZ and MSN designed, conducted the experiments, and wrote the manuscript; HL and XP performed OCT data analysis and statistics; JAM supervised the study and paper review; DML designed the experiments, conducted the mice injection, and wrote the manuscript.

Corresponding author

Correspondence to Daniel M. Lipinski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Nagree, M.S., Liu, H. et al. rAAV-mediated over-expression of acid ceramidase prevents retinopathy in a mouse model of Farber lipogranulomatosis. Gene Ther 30, 297–308 (2023). https://doi.org/10.1038/s41434-022-00359-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00359-w

Search

Quick links