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A primary goal in transplantation medicine is the induction of a tolerogenic environment for prevention of transplant rejection
without the need for long-term pharmacological immunosuppression. Generation of alloantigen-specific regulatory T cells (Tregs)
by transduction with chimeric antigen receptors (CARs) is a promising strategy to achieve this goal. This publication reports the
preclinical characterization of Tregs (TR101) transduced with a human leukocyte antigen (HLA)-A*02 CAR lentiviral vector (TX200)
designated to induce immunosuppression of allograft-specific effector T cells in HLA-A*02-negative recipients of HLA-A*02-positive
transplants. In vitro results demonstrated specificity, immunosuppressive function, and safety of TX200-TR101. In NOD scid gamma
(NSG) mice, TX200-TR101 prevented graft-versus-host disease (GvHD) in a xenogeneic GvHD model and TX200-TR101 Tregs
localized to human HLA-A*02-positive skin transplants in a transplant model. TX200-TR101 persisted over the entire duration of a
3-month study in humanized HLA-A*02 NSG mice and remained stable, without switching to a proinflammatory phenotype.
Concomitant tacrolimus did not impair TX200-TR101 Treg survival or their ability to inhibit peripheral blood mononuclear cell
(PBMC) engraftment. These data demonstrate that TX200-TR101 is specific, stable, efficacious, and safe in preclinical models, and
provide the basis for a first-in-human study.
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INTRODUCTION
Solid organ transplantation requires lifelong immunosuppressive
maintenance therapies, such as corticosteroids, calcineurin
inhibitors (tacrolimus/cyclosporine), and mycophenolate mofetil
to prevent allograft rejection. These treatments are associated
with an increased risk of infections and de novo malignancies as
complications of chronic immunosuppression, as well as drug-
related adverse effects, reducing the life expectancy of transplant
patients [1, 2]. Thus, the induction of a tolerogenic environment
for prevention of immunological rejection of transplanted organs
without the need for long-term pharmacological immunosuppres-
sion remains a primary goal in transplantation medicine.
Conditioning the immune response of solid organ transplant

recipients towards allograft acceptance using cell-based therapies is
clinically promising [3, 4]. Current efforts are focusing on regulatory
T cells (Tregs), which are essential in controlling immune responses
to alloantigens [3]. Tregs are involved in graft-specific tolerance after
solid organ transplantation and exert their suppressive functions,
such as inhibition of T- and B-cell proliferation and suppression of
antigen-presenting cells, via a variety of cell contact-dependent and
-independent mechanisms. Unlike pharmacological immunosup-
pressants, antigen-specific Treg therapy has the potential of
generating specific immunotolerance targeted towards the allograft,
without causing systemic immunosuppression [4].

Several clinical trials have been initiated to explore the use of
Tregs in solid organ transplantation and other indications,
including refined therapeutic approaches enabled by the devel-
opment of flow cytometric, Good Manufacturing Practice-
compliant protocols of Treg isolation [3, 4]. It has been well
established that antigen-specific Tregs are more potent than
polyclonal Tregs in preventing graft-rejection, offering targeted
therapy rather than generalized immunomodulation [3]. One
approach to generate allospecific Tregs is enrichment from a
polyclonal population by ex vivo expansion upon allogeneic
stimulation. Currently available preclinical and early-stage clinical
trial results demonstrate the safety of polyclonal and antigen-
specific Treg therapies in various settings [3]. The recently
published ONE Study combined several cell-based therapies,
including allospecific, donor-expanded Tregs, and compared them
to standard of care in renal transplant patients [5]. Cell-based
therapies were found to be safe and allowed reduction of
immunosuppression to monotherapy in many cases, without
affecting the allograft rejection rate significantly.
Genetic modification to generate specific, antigen-targeted Tregs

is currently being explored in vitro and in vivo. Modification of T-cell
receptor (TCR) alpha and beta chain genes to generate dual
allospecificity has been found to protect allografts in a fully
mismatched murine heart transplant model [3]. Another promising
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approach for generating antigen-specific Tregs is the use of chimeric
antigen receptors (CARs) that combine antigen-binding domains,
most commonly a single-chain variable fragment (ScFv) derived
from the variable domains of antibodies, with the signaling domains
of the TCR and additional costimulatory domains. This approach has
already been successfully applied in oncology, to redirect conven-
tional T cells (Tconvs) against tumors, leading to promising
antitumoral activity in hematologic malignancies but also to severe
and life-threatening adverse reactions [6]. Engineered antigen-
specific Tregs were shown to be more potent than polyclonal Tregs
in humanized mouse models of skin transplant [7–9] and GvHD
[8, 10, 11] as well as in syngeneic mouse models [12, 13] clearly
demonstrating the benefit of CAR-antigen specificity.
Mismatched human leukocyte antigens (HLAs) are an important

barrier to successful transplantation. HLA molecules can elicit
strong immune responses and generation of anti-donor HLA
antibodies can lead to frequent rejection episodes [14, 15]. HLA
class I molecule A*02 (HLA-A*02) has a high allelic frequency and a
substantial proportion of organ transplantations will naturally
result in a mismatch. Approximately 70% of Caucasian transplant
recipients are HLA-A*02-negative and 30% of organ donors are
HLA-A*02-positive, leading to a potential mismatch in 21% of
transplantations [7, 16].
To generate immunotolerance, CARs can be employed to

redirect naïve human Tregs towards a designated HLA class I
molecule. We developed a humanized HLA-A*02 CAR for
transduction of autologous Tregs from HLA-A*02-negative reci-
pients of mismatched HLA-A*02-positive organs, with the aim to
induce immunosuppression of allograft-specific effector T cells
that might lead to graft rejection. Based on an initial HLA-
A*02:01–specific CAR derived from the ScFv of a mouse
monoclonal antibody against human HLA-A*02 [10], a panel of
humanized HLA-A*02 CARs was developed and tested in Tregs for
their ability to suppress xenogeneic graft-versus-host disease
(GvHD) and rejection of human skin allografts in immunocom-
promised mice [7–9]. Based on these proof-of-concept experi-
ments, we have further developed a lentiviral vector (TX200)
encoding a CAR containing a humanized ScFv specific for the HLA-
A*02 antigen, for use in a clinical setting, and optimized our gating
strategy for isolation of autologous naïve (cluster of differentiation
[CD] 45RA+) human Tregs (TR101). The resulting HLA-A*02 CAR-
Tregs are named TX200-TR101.
A first-in-human trial is planned to investigate induction of

allograft tolerance in HLA-A*02-negative recipients of a kidney
transplant from an HLA-A*02-positive donor by administration of
TX200-TR101 after transplantation. Notably, this will be the first
time CAR-Tregs are investigated in a clinical trial. Therefore, we
conducted a wide range of preclinical tests required for medicinal
products containing genetically modified cells intended for use in
humans, to assess the quality, safety, and efficacy of the cell
product. This publication provides an overview of key components
of the preclinical package.

MATERIALS AND METHODS
Ethics approval
All animal experiments were performed in accordance with relevant
guidelines and regulations, either in an approved animal facility at
Sangamo Therapeutics France (accredited by the French Ministry of
Research, Arrêté n° 4566) according to the APAFIS (“Autorisation de Projet
utilisant des Animaux à des Fins Scientifiques”)-approved protocol APA-
FIS#12909-2017121211476703 v4 and in compliance with the Guide for
the Care and Use of Laboratory Animals, or at the University of British
Columbia (UBC), approved by the UBC Animal Care Committee (A16-0300).
Experiments using human samples were performed in accordance with

the Declaration of Helsinki and approved by appropriate ethics commit-
tees. Leukopaks for Treg isolation were sourced from HemaCare (North-
ridge, USA), an FDA-registered collection center, from healthy human
volunteers who consented under an Institutional Review Board-approved

protocol compliant with Code of Federal Regulations Title 21 Part 1271.
Allogeneic T cells and peripheral blood mononuclear cells (PBMCs) were
obtained from healthy donors following written consent according to
protocols approved by the Etablissement Français du sang. Human skin
discarded from plastic surgery was obtained from the Harvard Skin
Resource Centre, Skin Works, or the Cambie Surgery Clinic according to
protocols approved by the UBC Clinical Research Ethics Board (H16-02930).

Generation and propagation of Tregs with HLA-A*02-specific
CAR
The humanized HLA-A*02 ScFv was fused to a transmembrane domain and
a signaling domain composed of the intracellular domain of human CD28
and CD3ζ. The control CAR TX235 was composed of the humanized HLA-
A*02 ScFv and transmembrane domain but lacked intracellular signaling
domains CD28 and CD3ζ. The resulting cDNA was cloned into a lentiviral
vector. The TX200 lentivirus was produced by Lentigen/Miltenyi (Gaithers-
burg, USA). The TX235 lentivirus was generated in house by transfecting
adherent HEK293T cells (Lenti-X) with a lentiviral 4-plasmid system
including human immunodeficiency virus type 1 (HIV-1) gagpol, HIV-1
Rev, envVSV-G, and the TX235 CAR transfer plasmid. A schematic of TX200
and TX235 is presented in the supplementary data (Fig. S1). Surface
expression was determined by flow cytometry using fluorescent HLA-A*02
dextramer (#WB2666, Immudex, Denmark).
White blood cells were harvested from healthy HLA-A*02-negative

donors using leukapheresis and were cryopreserved (HemaCare). The
leukapheresate was thawed and cells were isolated after staining for CD4
(PE-Vio770, #130-093-142), CD45RA (FITC, #170-076-502), CD25 (PE, #170-
076-505) and CD127 (APC, #170-076-501) with antibodies that were of
Good Manufacturing Practice-grade, except CD4 PE-Vio770, (all Miltenyi
Biotech) to isolate naïve Tregs defined as CD4+/CD45RA+/CD25high/
CD127low using an SH800 cell sorter (Sony, Japan). The gating strategy is
shown in the supplementary data (Fig. S2). Cells were then resuspended in
X-VIVO-15 medium (#BEBP02-054Q, Lonza) with 1000 U/ml interleukin (IL)-
2 (#2238131-A, Novartis Pharma) and activated with anti-CD3/CD28-coated
dynabeads (#40203D, Life Technologies). After 72 h, cells were transduced
with the lentiviral vector and further expanded in X-Vivo-15 medium with
1000 U/ml IL-2 and anti-CD3/CD28-coated dynabeads. Medium was
refreshed with IL-2 every 2 days. Cells were expanded for less than
2 weeks to keep the cells in an exponential phase of growth and minimize
loss of the naïve Treg phenotype. At harvesting, magnetic beads were
removed with the CTS™ DynaMag system (#12102, ThermoFisher, France)
and cells were washed and cryopreserved in AT2 vials (AT-Closed Vial®,
Aseptic Technologies, Belgium) in CryoStor CS10 (#210102, BioLife
Solutions, USA). Vials were stored at −150 °C in a dry freezer until further
use. After lentiviral transduction and expansion, cells were 100% CD4+/
CD45RA+, 99.8 ± 0.10% CD25+, 97.8 ± 0.59% CD127low, and 93.6 ± 1.26%
FOXP3+ (mean ± SEM with n= 16), with FOXP3 TSDR hypomethylation of
89.1 ± 3.4% after thawing. Cells were viable at 86.9 ± 1.3% and transduced
with the HLA-A*02 CAR at 54.7 ± 1.8% (mean ± SEM, n= 20). Of note, an
integration site analysis indicated polyclonal insertion of the lentiviral
vector and no unexpected integration or site selectivity were found (data
not shown).

Flow cytometry
Cells from in vitro experiments were washed with phosphate-buffered
saline (PBS)/4% bovine serum albumin and stained for cell surface markers
including HLA-A*02 dextramer (#WB2666-APC, Immudex, Denmark), anti-
human CD4, and anti-human CD69 (VioBlue, #130-113-219 and APC-
Vio770, #130-112-616, Miltenyi Biotech, France). Prior to in vivo experi-
ments, the number of HLA-A*02 CAR-expressing cells in the Treg batch
used was determined using HLA-A*02 dextramer (#WB2666-PE, Immudex,
Denmark).
Following in vivo experiments, spleen and brain samples were passed

through a 70-µm cell strainer to obtain a single cell suspension. Brain cells
were then incubated in RPMI/5% fetal calf serum (FCS) with 2.5 mg/ml
collagenase D (#11088858001, Sigma–Aldrich, France) at 37 °C under
agitation, washed in RPMI/5% FCS, and centrifuged. The cell pellet was
resuspended in 70% (v/v) Percoll solution (#GE17-0891-01, Sigma–Aldrich,
France), centrifuged at 500 × g over 37% (v/v) Percoll, and cells at the
interface of the Percoll 70/37 gradient were recovered. Other tissues were
roughly chopped with a scalpel blade and digested in RPMI/5% FCS
containing 150 µg/ml collagenase D and 25 µg/ml DNase I (#10104159001,
Sigma–Aldrich, France) and passed through a cell strainer. Red blood cells
in blood samples and tissues were lysed with Red Blood Cell Lysing Buffer
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(#R7757, Sigma–Aldrich, France) or ammonium chloride. Blood and tissue
cells were washed with PBS/2% FCS and incubated with mouse Fc block
(#553142, BD Biosciences, France). Cells were then washed with PBS/4%
bovine serum albumin and stained. Fixable viability dyes eFluor780 or
eFluor506 (#65-0865-14 and #65-0866-14, ThermoFisher, France) were
used. Cells were stained first with anti-human HLA-A*02 (BV421, #740082
or PE, #558570, BD Biosciences, France) and other cell surface markers,
including anti-human CD4 (PE-Cy7, #557852 or FITC, #555346, BD
Biosciences, France; or Percp-Cy5.5, #45-0049-42, ThermoFisher, France)
and anti-human CD45 (VioGreen, #130-110-638, Miltenyi Biotech, France),
and then fixed and permeabilized with the forkhead box P3 (FOXP3)
staining buffer set (#00-5523-00, ThermoFisher, France), and stained for
intracellular markers, including anti-human FOXP3 (PE, #12-4777-42,
ThermoFisher, France or Alexa Fluor 647, #560045, BD Biosciences, France).
Further antibody details are provided in the supplementary methods.
An Attune™ NxT flow cytometer and Attune™ NxT software were used

for in vitro experiments, the biodistribution study, and tacrolimus study
and analyses were performed with FlowJo V10. A MACSQuant Analyzer 10
with MACSQuantify software 2.8 was used for the GvHD model and
hypomethylation study, and Cytoflex (Beckman Coulter) with FlowJo
Software V9.9.4 and 10.3 was used for the skin transplant experiment.
Naïve Tregs were isolated using an SH800 cell sorter and the gating
strategy was modified from [17]. Exemplary gating strategies are presented
in the supplementary methods (Fig. S2).

FOXP3 hypomethylation
To assess FOXP3 Treg-specific demethylated region (TSDR) hypomethyla-
tion, genomic DNA was extracted from cell pellets using the DNeasy Blood
and tissue kit (#69506, Qiagen, USA), DNA bisulfite conversion was done
using the Epitech Fast Bisulfite Conversion Kit (#59826, Qiagen, USA), and
FOXP3 TSDR hypomethylation was then assessed by qPCR high-resolution
melting curve analysis using Precision Melt Supermix (#1725112, Biorad,
France) and FOXP3 TSDR-specific primers (forward: TTGGGTTAAGTTTGTTG-
TAGGATAG, reverse: ATCTAAACCCTATTATCACAACCCC, Sigma Aldrich,
France). The fragment analyzed included 11 CpG sites and total TSDR
methylation was calculated as the mean of methylation percentage of
each individual CpG. Methylation levels were determined using a standard
curve (#59695, Qiagen). For CAR-Treg products manufactured from
leukapheresates of female donors, raw values were corrected to consider
that one of the two TSDR alleles is fully methylated as a result of
X-inactivation.

Plasma cytokine assessment
Human cytokines in plasma (interferon-γ [IFNγ], IL-1β, IL-2, IL-6, IL-10, IL-
12p70, IL-13, IL-17A/F) were measured using multiplex cytokine immu-
noassay plates (V-plex custom human biomarker proinflammatory panel,
#30098491, MesoScaleDiscovery, USA) according to manufacturer’s
instructions.

In vitro assays
For in vitro experiments, each Treg donor constituted an individual
experiment and n represents the number of Treg donors. Per experiment,
3 to 4 different Treg batches were used (see figure legends for number of
biological and technical replicates). Mycoplasma testing was performed for
all isolated cells as part of the quality assessments.
For activation, suppression, and cross-reactivity assays, TX200-TR101

Tregs were first cultured at 37 °C in X-VIVO-15 medium (#BEBP02-054Q,
Lonza) with 300 IU/ml IL-2 (#2238131-A, Novartis Pharma) for 48 h.
In the activation assay, TX200-TR101 Tregs were stimulated for 24 h with

anti-CD3/CD28-coated dynabeads (#40203D, Life Technologies, 1 bead:1
cell ratio) as a positive control for maximum TCR activation, with HLA-A*02-
positive PBMCs (1:1 ratio of PBMCs to Tregs), with HLA-A*02 dextramer
(#WB2666-PE, Immudex, Denmark), or with HLA-A*02-negative PBMCs (1:1
ratio of PBMCs to Tregs) or blank dextramer (#NI3233, Immudex, Denmark)
as negative controls. Cells were then harvested and analyzed by flow
cytometry.
In the suppression assay, Tconv were stained with a fluorescent

proliferation dye (eFluor450, #65-0842-85, ThermoFisher, France). TX200-
TR101 Tregs were cultured without IL-2 for 24 h and preactivated with HLA-
A*02 or blank dextramer for 24 h while allogeneic CD4+/CD25– Tconv were
preactivated for 24 h with anti-CD3/CD28-coated dynabeads (1:1 ratio).
Preactivated Tconv and allogeneic TX200-TR101 Tregs were then co-cultured
at Tconv:Treg ratios of 1:1, 2:1, 4:1, 8:1, 16:1 or 1:0 for 3 days at 37 °C in X-

VIVO-15 medium. Proliferation suppression of Tconv was assessed by flow
cytometry. The percentage of suppression was calculated for each ratio
Tconv:Treg as the percentage of inhibition of the Tconv proliferation when
cultured with Tregs compared with Tconv cultured alone.
In the cross-reactivity assay, TX200-TR101 Tregs were co-cultured with

characterized cryopreserved human PBMCs (#CTL-UP1, Cellular Technology
Limited) in a 1:1 ratio for 24 h. The HLA genotypes of the PBMCs that were
available in the biobank for testing are specified in the supplementary.
Cells were then harvested and analyzed by flow cytometry.
To assess the risk of cellular transformation and acquisition of a

tumorigenic potential, TX200-TR101 Tregs cultured in X-VIVO-15 medium
with 300 IU/ml IL-2 for 24 h were left unstimulated or chronically
stimulated with anti-CD3/CD28-coated dynabeads (1:1 ratio) in the
presence or absence of high-dose IL-2 (1000 IU/ml) for up to 75 days.
Expansion with chronical stimulation was performed every 7 days and sub-
passage every 2 days until cell death. From the third round of activation
with beads, and/or depending on the cell growth, beads were replaced
every 7 days. Three days after activation, cells were counted and diluted
with fresh medium. This medium refresh was performed every 2 days,
based on cell counting. In culture conditions where viability reached
<3–5%, cells were kept in culture for an additional 15 days, with a medium
refresh every 2–3 days, to ensure no clone of immortalized cells would
grow. For cells cultured with high-dose IL-2, several starvation cycles were
performed to ensure that no IL-2-independent cell growth occurred.
Weekly, 2 samples of 1–0.5 × 106 cells were frozen in 10% dimethyl
sulfoxide and sent to Life Length® (Madrid, Spain) for assessment of
telomere length using high throughput quantitative fluorescent in situ
hybridization technology [18] and of telomerase activity using a
telomerase repeat activity protocol modified for real-time qPCR analysis
[19]. Each assay analyzed 5 technical replicates.

Mouse models
NOD scid gamma (NSG) mice (NOD.Cg-Prkdcscid Il2rgtmWjl /SzJ, JAX stock no
005557) [20] and HLA-A*02 NSG mice with humanized HLA-A*02 (NOD.Cg-
Prkdcscid Il2rgtm1Wjl Tg[HLA-A/H2-D/B2M]1Dvs/SzJ, JAX stock no 014570)
[21] were purchased from Jackson Laboratory (Bar Harbor, USA),
distributed by Charles River (Lyon, France) or bred in house at the UBC.
Unless otherwise specified, mice were housed in a specific opportunistic
pathogen-free facility, in individually, positively ventilated polysulfone
cages with HEPA-filtered air, controlled 12 h light/dark cycle, temperature
of 20–26 °C, and relative humidity of 30–70%. Filtered tap water and
standard rodent chow were provided ad libitum. For experiments, mice
were age-matched but distributed randomly to treatment groups. Except
for the skin graft experiment that was conducted with two Treg batches,
each in vivo experiment was conducted with one Treg batch/donor and n
represents the number of mice per group.
Unless otherwise specified, mice were conditioned with intraperitoneal

injection of 30mg/kg busulfan (#B2635, Sigma–Aldrich) to favor human
cell engraftment approximately 24 h prior to intravenous human cell
injection via the tail vein. The number of cells for injection was determined
for each batch of Tregs by flow cytometric analysis of HLA-A*02 CAR-
expressing cells using dextramer. The percentage of dextramer-positive
cells ranged from 45–72% and the number of Tregs injected ranged from
2.5–5 × 106 cells per mouse in the individual experiments. FOXP3
hypomethylation levels were also assessed prior to cell injection.
Throughout experiments, body weights and GvHD scores were monitored
3 times weekly by investigators that were blinded to treatment. GvHD was
scored based on weight, fur texture, posture, activity level, and skin
integrity. Unless otherwise specified, categories were rated from 0–3 as
described in the supplementary (Table S2), with higher scores indicating
more symptoms. During experiments, blood samples were collected by
retro-orbital sampling under local anesthesia (unless specified otherwise
below). At the end of experiments or when ethical endpoints were
reached, mice were euthanized by cervical dislocation, necropsy was
performed, and tissue and blood samples were collected.
In the GvHD experiment, a total of 30 female NSG mice aged 7–8 weeks

and with a median (range) weight of 22 g (20–25 g) were randomly
assigned to one of the 3 following groups: HLA-A*02-positive human
PBMCs alone, together with TX200-TR101 Tregs, or with TX235-TR101 Tregs
(n= 5 per group/2 pooled experiments). Mice were conditioned with
busulfan, injected with HLA-A*02-positive human PBMCs and/or Tregs (1:1
ratio, 5 × 106 cells each), and monitored as described above for 4 weeks.
Blood samples for flow cytometry were collected weekly and blood and
spleen were collected at sacrifice. Representative fluorescence-activated
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cell sorting (FACS) plots obtained in blood are shown in the supplementary
data (Fig. S3).
In the hypomethylation experiment, a total of 11 male and female HLA-

A*02 NSG mice aged 8–11 weeks and with a median (range) weight of 29 g
(23–36 g) were randomly assigned to one of the 3 following groups
according to the degree of FOXP3 TSDR hypomethylation of the injected
TX200-TR101 Tregs: 80.8% hypomethylation (n= 5, 3 males and 2 females),
92% (n= 3, 1 male and 2 females), and 89.1% (n= 3, 2 males and 1
female). Mice were conditioned with busulfan, injected with TX200-TR101
Tregs (2.5 × 106 cells per mouse), and monitored as described above for
27 days. Blood samples for flow cytometry were collected weekly and
blood, spleen, liver, and lung were collected at sacrifice. The results of
these experiments are presented together with results of previous
experiments with a similar set-up, where Tregs isolated with a previous
gating strategy (TR100) were included. In these experiments, male and
female HLA-A*02 NSG mice aged 8–11 weeks received TX200-TR100 Tregs
with 69% hypomethylation (n= 20, 9 males and 11 females), or TX200-
TR101 Tregs with 100% hypomethylation (n= 5, 2 males and 3 females) or
98% hypomethylation (n= 2, 1 male and 1 female), and were monitored
for up to 27 days.
In the biodistribution experiment, a total of 24 male and female HLA-A*02

NSG mice aged 8-10 weeks and with a median (range) weight of 24 g
(20–31 g) were conditioned with busulfan, injected with TX200-TR101 Tregs
(3 × 106 cells per mouse), and monitored as described above. Mice were
randomly assigned to one of 3 sacrifice timepoints at 1, 2, and 3 months
(n= 8, 3 males and 5 females, planned per timepoint). Blood samples for flow
cytometry were collected weekly and blood (for flow cytometry and plasma
cytokine assessment), spleen, liver, lung, kidney, heart, testis/ovaries, brain,
and intestine were collected at sacrifice. Gross pathology and histopathology
were performed. For animals euthanized 2 and 3 months post-injection, parts
of the spleen, lung, kidney, liver, testis/ovary, brain, and the whole intestine
were collected for histopathology. Any gross lesion/abnormal tissue growth
during the study was collected with half the lesion analyzed by flow
cytometry and half fixed in 10% buffered formalin for histological analysis.
The rest of the spleen, liver, lung, kidney, heart, brain, and testis/ovaries were
processed for flow cytometric analysis. The gating strategy is shown in the
supplemental data (Fig. S4).
In the tacrolimus experiment, a total of 20 female NSG mice aged

7 weeks and with a median (range) weight of 21 g (17–25 g) were
randomly assigned to one of the 4 following treatment groups: PBMCs only
(n= 7), PBMCs plus tacrolimus (n= 6), TX200-TR101 Tregs (n= 3), and
TX200-TR101 Tregs plus tacrolimus (n= 4). Mice were conditioned with
busulfan and injected with PBMCs and/or Tregs (5 × 106 cells each), as
described above and tacrolimus groups received daily intraperitoneal
injections of 0.5 mg/kg tacrolimus (Prograf, #29485063, Astellas Pharma,
through Euromedex, France) for 3 weeks, starting 7 days after cell injection.
The tacrolimus dose was chosen based on the results of pilot studies,
where doses between 0.1 and 2mg/kg had been tested. Mice were
monitored as described above for a total duration of 3 weeks. Spleen was
collected at sacrifice.
In the skin transplant experiment, a total of 32 female NSG mice aged

8–12 weeks and with a median (range) weight of 22 g (20–25 g) received
dorsal skin transplants of approximately 1 cm2 from human HLA-A*02-
positive donors as described previously [8]. Nineteen mice received a graft
from Donor 1 (Cohort 1) and 13 mice received a graft from Donor 2 (Cohort
2). Nine weeks after skin transplantation, mice were randomly assigned to
one of the 4 following groups: PBS (n= 3 each for Cohorts 1 and 2), HLA-
A*02-negative human PBMCs (n= 6 for Cohort 1, n= 3 for Cohort 2), HLA-
A*02-negative human PBMCs plus autologous TX200-TR101 Tregs (n= 7
for Cohort 1, n= 5 for Cohort 2), and TX200-TR101 Tregs alone (n= 3 for
Cohort 1, n= 2 for Cohort 2) and injected with 10 × 106 PBMCs and/or
5 × 106 Tregs (2:1 ratio). Each cohort received a different batch of TX200-
TR101 (Donors 1 and 2). Human PBMC engraftment and skin rejection were
analyzed and blood samples for flow cytometry collected weekly. GvHD
score categories in this experiment were rated from 0–2 as described in
Cooke et al. 1996 [22] and blood samples were collected from the
saphenous vein. The mice were monitored for 28 to 35 days, and skin graft,
surrounding mouse skin, spleen, intestine, liver, and lung were harvested
for histopathology at sacrifice. GvHD and skin rejection scores of both
cohorts were pooled for analysis.

Histology and immunohistochemistry
Human skin grafts and surrounding mouse skin were fixed overnight at
4 °C in 10% formalin and stored in 70% ethanol before paraffin-embedding

and preparation of hematoxylin/eosin-stained sections. For histopatholo-
gical skin graft scoring, slides were evaluated by a blinded clinical
pathologist using a scoring system defined by 6 factors (Lerner grade,
spongiosis, necrotic keratinocytes, adnexal involvement, parakeratosis,
lymphoid cuffs in dermis) as described previously [8]. Tissues collected in
the biodistribution study were fixed in 10% buffered formalin and shipped
to Vetopath (Antibes, France) for histological analysis. Tissues were
dehydrated in Tissue Tek VIP2000 (Miles Scientific) and embedded in
resin-mixed paraffin after xylene baths. Tissues collected at the UBC were
shipped to Pacific Tox Path, LLC (USA) for evaluation, where tissues were
trimmed and processed to paraffin blocks. All tissue blocks were cut at
4–5 µm and sections stained with hematoxylin/eosin and examined
microscopically by a board-certified veterinary pathologist.
Immunohistochemistry for detection of human FOXP3 and human CD45

in mouse organs (intestine, liver, lung, and spleen) and human skin grafts
and analysis of slides was performed as described previously [8].
Immunohistochemical localization of CD45 as leukocyte marker and
FOXP3 as Treg marker was performed by light microscopy for individual
mice and scored according to a grading scale: 0 (no findings), 1 (minimal),
2 (mild), 3 (moderate), 4 (marked) and 5 (severe).

Statistics
Sample size calculation for mouse experiments was performed with
GPower software 3.1. Five mice per group were needed to get an effect
size of 2 between control PBMC- and CAR-Treg-treated groups with a test
power of 0.89. Statistical analyses were conducted using GraphPad Prism
8.4.3. Information on sample size, replicates, variables, and statistical
significance testing is provided in the figure legends. One-way ordinary
analysis of variance (ANOVA), 2-way ANOVA (with Tukey’s or Dunnett’s
multiple comparison test), Kruskal–Wallis multiple comparison test with
Dunn’s post-test, or Holm-Sidak method following multiple t-test, were
performed as appropriate to assess statistical significance. P-values < 0.05
were considered statistically significant. P-values in figures are presented
as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

RESULTS
TX200-TR101 Tregs are HLA-A*02-specific and exert
immunosuppressive function in vitro
The clinical candidate TX200 was developed based on the
humanized HLA-A*02 ScFv variant identified in the proof-of-
concept study [8], with a CAR harboring an ScFv from a
humanized antibody against HLA-A*02 linked to protein-
subunits composed of CD28 and CD3ζ. An enriched subset of
naïve specific CD4+/CD45RA+/CD25high/CD127low Tregs (TR101)
transduced with the HLA-A*02-specific CAR construct (TX200-
TR101 Tregs) was first characterized in vitro.
After lentiviral transduction and expansion, cells were 100 ± 0%

CD4+/CD45RA+, 99.8 ± 0.10% CD25+, 97.8 ± 0.59% CD127low, and
93.6 ± 1.26% FOXP3+ (mean ± SEM, n= 16). Quantification of
cytokines in the culture supernatants measured by multiplex
cytokine immunoassay showed that the Tregs produced only IFNγ
(mean ± SEM of 967.4 ± 442.1 pg/ml after TCR stimulation [n= 12]
and 171.1 ± 40.1 pg/ml after CAR stimulation [n= 12]) in vitro.
Levels of IL-2, IL-17A and IL-4 were below the lower limit of
quantification after activation either through their TCR by anti-
CD3/CD28-coated dynabeads or through their CAR using HLA-
A*02 dextramer. These data indicated that transduction and
expansion of TX200-TR101 did not alter the Treg phenotype.
Specificity of activation of TX200-TR101 Tregs through the CAR

by the target antigen HLA-A*02 was demonstrated by flow
cytometric monitoring of CD69, one of the earliest cell surface
antigens upregulated following Treg activation [23], in CD4+ cells
(Fig. 1A). Stimulation of TX200-TR101 Tregs with HLA-A*02-
positive PBMCs resulted in an activation level comparable to
anti-CD3/CD28-coated dynabeads that were used as a positive
control for maximum activation via the TCR (88.5 ± 6.2% CD4+/
CD69+ cells for PBMC-stimulated cells versus 90.5 ± 5.6% CD4+/
CD69+ for TCR-stimulated cells [mean ± SEM, n= 4]); activation
was also observed with HLA-A*02 dextramer (41.5 ± 8.4% CD4+/
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CD69+ cells), whilst blank dextramer and HLA-A*02-negative
PBMCs did not lead to an increase in CD4+/CD69+ cells
(12.0 ± 3.9% and 15.2 ± 4.7% CD4+/CD69+ cells, respectively).
The ability of TX200-TR101 Tregs to suppress allogeneic Tconv

was assessed after co-culture at different ratios following pre-
activation of TX200-TR101 Tregs with HLA-A*02 dextramer and of
Tconv with anti-CD3/CD28-coated dynabeads (Fig. 1B). TX200-
TR101 Tregs preactivated by their target antigen HLA-A*02 (HLA-
A*02 dextramer) exerted a dose-dependent suppressive effect on
Tconv proliferation, with 52.7 ± 6.3% suppression observed when
co-cultured in a 1:1 ratio versus 19.2 ± 2.8% suppression for Tregs
activated with control dextramer blank (mean ± SEM, n= 4).
Due to a high degree of homology between HLA alleles,

virtually all anti-HLA antibodies have some cross-reactivity. To
ensure safety and bioavailability of the clinical candidate, cross-
reactivity towards other HLA-type molecules should be minimal

whilst ideally every sub-allele of HLA-A*02 should activate the
TX200-TR101 Tregs. Specificity was assessed by co-culture of
TX200-TR101 Tregs with characterized, cryopreserved human
PBMCs followed by flow cytometric assessment of CD69+ cells.
The HLA-A alleles of all assessed PBMCs as well as their genotype
regarding other HLA genes, such as HLA-B, HLA-C, HLA-DRB1, HLA-
DQB1, HLA-DPB1, HLA-DQA1, and HLA-DPA1, are provided in the
supplementary (Table S3). TX200-TR101 Tregs were activated by
co-culture with all PBMCs carrying HLA-A*02-alleles (36–75%
CD69+ cells), and 1 allele of HLA-A*02 was sufficient to induce
activation, whilst only very few Tregs were activated by co-culture
with PBMCs carrying other HLA alleles (4–13% CD69+) (Fig. 1C). Of
note, no cross-reactivity was observed against HLA-A*68 and HLA-
A*25, two alleles that were recognized by the non-humanized
form of this CAR [8]. Testing against HLA-A*69, an allele highly
similar to HLA-A*02 which would be expected to activate this CAR,
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Fig. 1 In vitro characterization of naïve Tregs transduced with the HLA-A*02 CAR (TX200-TR101 Tregs). A TX200-TR101 Tregs were
activated using either HLA-A*02 dextramer, blank dextramer (negative control), HLA-A*02-positive human PBMCs, HLA-A*02-negative PBMCs
(negative control), or anti-CD3/CD28-coated dynabeads as a positive control with maximum-level polyclonal TCR activation. Treg activation
was monitored via CD69 activation in CD4+ cells by flow cytometry. Bars represent mean ± SD (n= 4 Treg batches). The percentage of
transduction of HLA-A*02 CAR was 59.2 ± 3.1% (mean ± SEM). B TX200-TR101 Tregs pre-activated with HLA-A*02 dextramer or control
dextramer were co-cultured with allogeneic CD4+/CD25– T cells (Tconv), preactivated with anti-CD3/CD28-coated dynabeads for 3 days, at
Tconv:Treg ratios of 1:1, 2:1, 4:1, 8:1, 16:1, or 1:0. Tconv suppression was assessed by flow cytometric analysis following staining with the
fluorescent proliferation dye eFluor450. Data are presented as mean ± SEM (n= 4 Treg batches). The percentage of transduction of HLA-A*02
CAR was 49 ± 2.9% (mean ± SEM). Statistical significance of data was determined using the Holm-Sidak multiple t-test method (*p < 0.05).
C Specificity of TX200-TR101 Tregs was assessed by co-culture with human PBMCs with various HLA-A alleles (genotypes shown on the X-axis).
Treg activation was monitored via the percentage of CD69+ cells by flow cytometry. Data are presented as scatter plots, with each dot
representing a Treg batch and lines representing the mean ± SEM (n= 3 Treg batches, 1 technical replicate). The percentage of transduction of
HLA-A*02 CAR was 56 ± 2.3% (mean ± SEM). The continuous line represents the baseline of activation of non-transduced Tregs and the dotted
lines the variation ± 2 SD from the mean. The box highlights PBMCs positive for HLA-A*02 allele(s).
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was not done as this genotype is very rare and HLA-A*69-positive
PBMCs could not be sourced. In the upcoming clinical trial,
recipients that are HLA-A*69-positive will be excluded to ensure
patient safety. Similar results were observed with other activation
markers (see Supplementary Table S3).

TX200-TR101 Tregs are efficacious in a mouse model of
xenogeneic GvHD
Two mouse models were used to test the capacity of TX200-TR101
Tregs to reduce effector T cell activity in vivo. NSG mice were used
as a xenogeneic GvHD model. These mice have been shown to
accept the engraftment of mature human PBMCs for a limited
time, until GvHD onset around 3 to 4 weeks post-administration
due to cytotoxic and proinflammatory effects of activated CD4+

and CD8+ Tconvs [24]. NSG mice conditioned with busulfan were
injected with HLA-A*02-positive human PBMCs alone or in
combination with TX200-TR101 Tregs, or with negative control
Tregs transduced with a control CAR (TX235-TR101). These TX235-
TR101 Tregs are equivalent to polyclonal Tregs as this control CAR
is devoid of a signaling domain. Mice injected only with PBMCs or
co-injected with TX235-TR101 Tregs displayed significant GvHD,
quantified as increased GvHD scores (mean ± SEM 5.8 ± 0.58 and
7.0 ± 0.55, respectively, at day 26), whilst scores remained low in
mice co-injected with TX200-TR101 Tregs (mean ± SEM 0.6 ± 0.4 at
day 26) (Fig. 2A). Survival of mice receiving TX200-TR101 Tregs
was significantly improved compared to mice receiving PBMCs
only or control Tregs TX235-TR101 (Mantel-Cox Log-rank

p= 0.039) although the onset of GvHD was slightly delayed in
this control group (median survival 24.5 days for mice injected
with PBMCs versus 27 days for mice injected with PBMCs plus
TX235-TR101 control Tregs) (Fig. 2B). Human PBMC engraftment
and proliferation in blood and spleen, as assessed by the presence
of human CD4+ HLA-A*02-positive cells, was reduced in mice co-
injected with TX200-TR101 Tregs (mean ± SEM 0.57 ± 0.22 CD4+

HLA-A*02-positive cells/µl of blood versus 706.1 ± 268.8 for mice
injected with PBMCs only and 406.1 ± 77.3 for mice injected with
PBMCs plus TX235-TR101 control Tregs), with a statistically
significant difference observed in spleen (9.62 × 106 ± 3.33 × 106

CD4+ HLA-A*02-positive cells per spleen for mice injected with
PBMCs only versus 586.67 ± 247 in mice injected with PBMCs plus
TX200-TR101) (Fig. 2C). Co-injection of Tregs carrying the control
CAR TX235 resulted in a slight reduction of engraftment
(3.92 × 106 ± 4.54 × 105 CD4+ HLA-A*02-positive cells in spleen).

TX200-TR101 Tregs localize to skin grafts in a human skin
transplant mouse model
The functional capacity of the TX200-TR101 batches used in the
experiment was tested in a GvHD model, where they were shown
to effectively prevent GvHD onset in NSG mice (see Supplemen-
tary Fig. S5).
To assess whether TX200-TR101 Tregs could prevent allograft

rejection in vivo, NSG mice received skin transplants from human
HLA-A*02-positive donors, followed by injection of HLA-A*02-
negative human PBMCs to elicit skin graft rejection, with or
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Fig. 2 HLA-A*02-specific CAR-Tregs are efficacious at preventing GvHD onset. 7- to 8-week old female NSG mice were injected
intravenously with HLA-A*02-positive human PBMCs with or without HLA-A*02-specific CAR-Tregs, that were either transduced with the
TX200 construct (TX200-TR101 Tregs; percentage of transduction: 50.2%) or with a control CAR with non-signaling endodomain (TX235-TR101
Tregs; percentage of transduction: 71%). Mice were injected with 5 × 106 CAR-Tregs (A) GvHD score over time, with data presented as
mean ± SEM (n= 5 per group, scoring in 5 categories with 0: no findings, 1: mild, 2: moderate, 3: severe combined into a total score). Statistical
significance was determined using 2-way ANOVA: *p < 0.05. B Survival curve, Log-rank (Mantel-cox) test with *p= 0.039. C PBMC engraftment
in blood and spleen, 4 weeks after injection according to flow cytometric assessment of CD4+ HLA-A*02-positive cells. Data are shown as dot
plots, with each dot representing a mouse and bars representing the mean and error bars the SEM. For blood, the number of CD4+ cells/µl
blood is shown. Statistical significance was determined using 2-way ANOVA with Tukey’s multiple comparison test: *p < 0.05, ***p < 0.001.
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without autologous TX200-TR101 Tregs, or TX200-TR101 Tregs
alone or PBS as controls. Immunostaining of CD45 to detect
human T cells and of FOXP3 to detect human Tregs in skin grafts
showed human cells infiltrating in skin grafts of mice injected with
PBMCs, PBMCs plus TX200-TR101, and TX200-TR101 Tregs, whilst
FOXP3+ cells were detected only in skin of mice injected with
PBMCs plus TX200-TR101 and TX200-TR101 Tregs alone (Fig. 3A).
Human T cells, indicated by qualitative assessment of human

CD45 immunopositivity, were detected at low levels in the

intestine (mean ± SEM score 0.75 ± 0.25 arbitrary units [AU] as
estimated according to the grading score scale shown in the
methods section), and at higher levels in liver (2.78 ± 0.22 AU),
lung (3.33 ± 0.29 AU), and spleen (3.67 ± 0.24 AU) of mice injected
with PBMCs, with scores tending to be lower in organs of mice co-
injected with autologous human TX200-TR101 Tregs plus PBMCs
compared to those injected with PBMCs only (intestine
0.45 ± 0.21 AU, liver 1.75 ± 0.22 AU, lung 2.5 ± 0.29 AU, and spleen
2.75 ± 033 AU) (Fig. 3B). In human skin grafts, CD45 scores were
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Fig. 3 HLA-A*02-specific CAR-Tregs relocalize in skin grafts but have a minimal effect on human skin graft rejection. 8- to 12-week old
female NSG mice were transplanted with skin from human HLA-A*02-positive donors and co-injected with human HLA-A*02-negative PBMCs
and/or autologous TX200-TR101 Tregs at a PBMC:Treg ratio of 2:1. Controls were injected with PBS. Two batches of Tregs were used with 52
and 48% of HLA-A*02 CAR transduction, respectively. A Transplanted skin grafts harvested at day 28 were immuno-stained for CD45 and
FOXP3 to show the proportion of human CD45+ and FOXP3+ cells in each section. Representative images are shown; scale bars: 100 µm.
B Upper and lower panel show immunohistochemical assessment of human CD45 and FOXP3, respectively, in different mouse tissues and
human skin grafts 4 weeks after injection. Bars represent means ± SEM (n as above, immunohistochemistry scoring 0: no findings, 1: minimal,
2: mild, 3: moderate, 4: marked, 5: severe); absence of bars indicates cells were not detectable. C Cumulative skin graft histology scores 28 and
35 days after injection, presented as pooled results from 2 individual experiments. In each experiment (cohort), mice were engrafted with one
batch of skin and injected with one batch of cells. Data are presented as a scatter-plots with grey circles showing day 28 scores and white
triangles showing scores at day 35, with each dot representing a mouse, bars representing the mean of the pooled day 28 and day 35 data,
and error bars the SEM of the pooled data (n= 6 for PBS, n= 9 for PBMCs, n= 12 for PBMC plus TX200-TR101, n= 5 for TX200-TR101).
Statistical significance of data was calculated using 1-way ANOVA with multiple comparison to the PBMC group. D Skin graft survival curve,
log-rank (Mantel-Cox) test. For the PBMC group, all mice were terminated at day 28 due to onset of GvHD.
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slightly higher in mice co-injected with autologous human TX200-
TR101 Tregs and PBMCs compared with those injected with
PBMCs only (1.25 ± 0.18 AU and 0.56 ± 0.24 AU, respectively) but
not statistically significant (p= 0.08 per 2-way ANOVA). In mice
injected with human TX200-TR101 Tregs only, human CD45 was
only detected at low levels in the human skin grafts (CD45 score
0.167 ± 0.17 AU) and not in the other organs analyzed, indicating
specificity for their target antigen HLA-A*02. Human FOXP3
immunopositivity was only detected in human skin grafts of mice
co-injected with autologous human TX200-TR101 Tregs and
PBMCs and in mice injected with human TX200-TR101 Tregs
alone (FOXP3 scores of 1.75 ± 0.18 AU and 1.33 ± 0.33 AU,
respectively). Quantification of CD45+ and FOXP3+ cells in the
skin transplant harvested at day 28 from mice injected with
PBMCs plus TX200-TR101 or with TX200-TR101 only showed that
61.4 ± 4.59% (mean ± SEM; 7 field views; 3 mice) and 75.9 ± 7.29%
(mean ± SEM; 6 field views; 2 mice) of CD45+ cells were also
positive for FOXP3, respectively.
No significant decrease in skin graft histology scores performed

at day 28 was observed in mice co-injected with autologous
human TX200-TR101 Tregs and PBMCs compared with those
injected with PBMCs only (10.6 ± 0.88 [n= 8] versus 13.2 ± 0.86
[n= 9], respectively [mean ± SEM]). At day 35, a slight increase in
skin graft histology score was observed in animals receiving
PBMCs plus TX200-TR101 Tregs (14.75 ± 1.18, n= 4) and in animals
receiving TX200-TR101 Tregs alone (4.50 ± 0.50 at day 28 [n= 2]
versus 13.0 ± 1.73 at day 35 [n= 3]) (data per mouse and means
for the pooled data are presented in Fig. 3C). However, skin graft
rejection was delayed in animals receiving PBMC+ TX200-TR101
or TX200-TR101 alone compared to PBMCs alone with a median
survival of 35 days for the PBMC+ TX200-TR101 and TX200-TR101
alone groups versus 16 days for PBMCs alone (Fig. 3D).

No transformation of TX200-TR101 Tregs in vitro and
senescence following chronic stimulation
As no relevant in vivo tumorigenicity model is available for Tregs,
TX200-TR101 Tregs were tested in vitro to assess whether
transduction with the lentiviral vector TX200 or the cell culture
process induced cellular or molecular alterations increasing the
risk of tumorigenicity. When cultured in the absence of IL-2, the
viability of TX200-TR101 Tregs decreased rapidly, with <10% of
viable cells after 2 weeks, and no viable cells remaining after
1 month in culture (Fig. 4A). Similar results were observed during
chronic TCR stimulation with anti-CD3/CD28 dynabeads. In the

presence of high-dose IL-2, viability of TX200-TR101 Tregs was
maintained up to 75 days but removal of IL-2 still induced cell
death (Fig. 4B). Accordingly, TX200-TR101 Tregs were dependent
on IL-2 for survival and cell growth, irrespective of chronic TCR
stimulation. Relative telomerase activity (RTA) decreased over time
in TX200-TR101 Tregs cultured in the presence of high-dose IL-2
and anti-CD3/CD28 dynabeads (from mean ± SD 26.0 ± 3.8% RTA
at day 1 to 15.0 ± 0.7% RTA at day 43 for cells stimulated with anti-
CD3/CD28-coated dynabeads plus IL-2 and 16.7 ± 2.4% RTA for
cells cultured with IL-2 only) as did telomere length (from
mean ± SD 9699.0 ± 14.4 base-pairs [bp] to 6154.3 ± 1079.8 bp at
day 43 for cells stimulated with anti-CD3/CD28-coated dynabeads
plus IL-2 and 5438 ± 874.7 bp for cells cultured with IL-2 only)
(Fig. 5A, B), suggestive of senescence despite IL-2 and TCR
stimulation. Senescence was also demonstrated after 54 days of
culture with IL-2 by analysis of other senescence markers.
Specifically, subpopulations of CD4+ Tregs were analyzed after
54 days in culture using CD45RA and CD27 to distinguish naïve, T
central memory (TCM), T-effector memory (TEM) and terminally
differentiated effector memory (TEMRA) cells (Fig. 5C). Tregs
cultured in the presence of IL-2 alone or with anti-CD3/CD28-
coated dynabeads plus IL-2 displayed mostly a TEM phenotype
(mean ± SD 27.5 ± 1.8% and 27.5 ± 13.0% on average for IL-2 or
anti-CD3/CD28-coated dynabeads plus IL-2 culture conditions,
respectively) or a TEMRA phenotype (68.7 ± 3.4% and 57.2 ± 28.9%
on average for IL-2 or anti-CD3/CD28-coated dynabeads plus IL-2
cultures, respectively). Flow cytometric analysis of expression of
CD57 and killer cell lectin-like receptor G1 (KLRG1), two markers of
senescence, showed that 14.4 ± 5.7% (mean ± SD) of CD4+ Tregs
expressed CD57 when cultured with IL-2 only whilst 26.6 ± 9%
expressed it when cultured with anti-CD3/CD28-coated dyna-
beads plus IL-2. Almost no expression of KLRG1 was detected
except on cells cultured with anti-CD3/CD28-coated dynabeads
plus IL-2 (10.9 ± 8.6% of CD4+ Tregs) (Fig. 5D). Senescence acidic
β-galactosidase activity (SA-β-Gal) was also analyzed after 54 days
in culture and was detected in 56.4 ± 29.2% of Tregs cultured with
IL-2 only and in 44.1 ± 23.3% of Tregs cultured with anti-CD3/
CD28-coated dynabeads plus IL-2 (Fig. 5E).

Quality assessment of TX200-TR101 Tregs
Any contaminant Tconvs transduced with the CAR could
potentially become proinflammatory effector T cells upon
activation via the HLA-A*02 antigen and produce inflammatory
cytokines, leading to cytotoxic effects. For safety purposes, it is
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after first IL-2 removal; white triangles: viability of Tregs after second IL-2 removal. Data are presented as mean ± SEM (n= 3 Treg batches).
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therefore essential that the cell population used is depleted of
Tconv. Flow cytometric T-cell phenotyping of TX200-TR101
demonstrated that only trace levels of contaminant non-Treg
T cells were included (see supplementary, Table S4 and
representative FACS plot Fig. S6). Epigenetically, Tregs and Tconvs
can be differentiated according to hypomethylation of the FOXP3
TSDR, which is fully demethylated in Tregs, whereas Tconv
transduced with the CAR might transiently express FOXP3 upon
activation but the FOXP3 locus would not be demethylated
[25, 26]. Therefore, low level of hypomethylation of the FOXP3
locus of TX200-TR101 Treg preparation may indicate some
contamination by Tconv. In early studies, HLA-A*02 CAR-Tregs
(TR100) were isolated with a less stringent gating strategy in
which the gate was set first on all CD25+/CD127low cells (rather
than on CD25high cells) followed by gating on CD45RA+ cells,
including some CD45RAint cells. These cells had a FOXP3 TSDR
hypomethylation level of only 69% and caused rapid body weight
reduction and GvHD, such that mice had to be euthanized starting
less than 2 weeks post-injection and none survived longer than
19 days. In contrast, with the TX200-TR101 gating strategy, CAR-
Tregs had a minimum level of 80.8% hypomethylation (Fig. 6) and

no signs of GvHD were observed in mice injected with TX200-
TR101 CAR-Tregs over 4 weeks (27 days) post-injection.

Engrafted TX200-TR101 Tregs are stable and safe in a
humanized HLA-A*02 NSG mouse model
Biodistribution, persistence, and potential toxicity of TX200-TR101
were analyzed over a 3-month period in humanized HLA-A*02
NSG mice, expressing the target antigen HLA-A*02 in all tissues
[21]. TX200-TR101 was well tolerated by HLA-A*02 NSG mice, with
no signs of clinical toxicity and no effect on group body weight
nor signs of GvHD (no GvHD score >3) over the course of the
study, with the exception of one mouse; this mouse had a score of
6 at day 47 post-injection, accompanied by weight loss up to 17%,
and was found dead at day 50. One further mouse was euthanized
at day 35 due to a tumor of ~0.9 mm3 on its left flank, categorized
histopathologically as a highly vascularized soft-tissue osteosar-
coma, likely of mouse origin. Flow cytometry revealed a low-level
HLA-A*02 CAR-Treg infiltrate in the unperfused tumor (3 × 104

cells in 0.9 mm3, suggesting that this tumor did not result from
Treg activity). With 1 mouse lost prematurely due to onset of
GvHD, overall survival at the scheduled termination was 95.8%
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(23/24). Scheduled culls at months 2 and 3 included 7 mice each.
No macroscopic signs of tumorigenicity were observed in any of
the organs analyzed at scheduled necroscopy. Histopathology
revealed spleen hypercellularity and extramedullary hematopoi-
esis and congestion of lung, with infiltration of lymphocytes
around pulmonary vessels, whilst no microscopic abnormalities
were observed in the kidney, liver, or ovaries. No structural
abnormalities were detected in testis, but there was no
spermatogenesis. As busulfan is a known inhibitor of spermato-
genesis in mice and rats [27, 28], the observed inhibition of
spermatogenesis in the male mice is likely related to conditioning
with busulfan, rather than effects of TX200-TR101. No TX200-
TR101 engraftment-related toxicity or other tissue abnormalities
were observed.
Multicolor flow cytometry was used to assess the expansion

efficiency and phenotype of TX200-TR101. Human HLA-A*02 CAR-
Tregs (CD4+HLA-A*02 dextramer+) in blood decreased over time
but were still present at month 3 (from mean ± SEM 13.4 ± 1.96%
human CD4+ HLA-A*02 dextramer+ cells 3 weeks post-injection to
4.26 ± 1.76% at month 2 and 0.93 ± 0.49% at month 3) (Fig. 7A).
The highest levels of human HLA-A*02 CAR-Tregs in tissues were
detected in spleen, lung, and liver, whilst only low levels were
found in heart, brain, kidney, and reproductive organs (Fig. 7B).
Human HLA-A*02 CAR-Tregs in tissues decreased over time, but
were still present at month 3, demonstrating persistence over
3 months. All human HLA-A*02 CAR-Tregs in spleen, lung, and
liver expressed FOXP3 at month 1 (mean ± SEM 99.8 ± 0.08%
FOXP3+ in spleen, 98.7 ± 0.68% FOXP3+ in lung, and 99.5 ± 0.22%
FOXP3+ in liver) and high percentages were still observed at
month 2 (80.1 ± 3.91% FOXP3+ in spleen, 75.8 ± 3.18% FOXP3+ in
lung, and 77.3 ± 3.62% FOXP3+ in liver), while decreased FOXP3
levels were observed at month 3 in liver (99.5 ± 0.22% FOXP3+ in
spleen, 77.3 ± 3.61% FOXP3+ in lung, and 56.4 ± 4.0% FOXP3+ in
liver), indicating a stable phenotype of TX200-TR101 Tregs for up
to 2 months (data not shown).
Plasma human cytokine levels did not indicate a switch of the

injected human Tregs to a proinflammatory phenotype (Fig. 8). No
increased levels of proinflammatory cytokines were observed
compared to naïve HLA-A*02 NSG mice; the levels of IL-6, IL-
12p70, IL-1β, IL-13 and IL-17A/F were below the lower limit of
quantification. Very low levels of IL-2 were detected and did not
increase over time (mean ± SEM 0.65 ± 0.19 pg/ml at day 30 to
0.49 ± 0.19 pg/ml at day 86). Levels of IFNγ were increased, from
540.8 ± 150.7 pg/ml 30 days post-administration to 323.7 ± 83.7 pg/

ml 86 days post-administration. This increase in IFNγ levels was
consistent with the production of this cytokine in vitro by TX200-
TR101 Tregs activated through the CAR using HLA-A*02 dextramer
measured in culture supernatant (171.1 ± 40.1 pg/ml, n= 12), with
levels considered low compared to the level of IFNγ produced by
lots contaminated with CAR-T-effector cells (12375 ± 7890 pg/ml,
n= 5). The anti-inflammatory and immunomodulatory cytokine IL-
10 was increased at day 30 post-administration of TX200-TR101 and
decreased over time (19.1 ± 4.49 pg/ml at day 30 to 0.60 ± 0.20 at
day 86).

Engrafted TX200-TR101 Tregs are not significantly impaired
by tacrolimus treatment
Tacrolimus is a standard-of-care immunosuppressant in solid organ
transplantation, described as deleterious to the survival of Tregs [29].
It was therefore tested whether the engraftment of CAR-Tregs and
their phenotype in the HLA-A*02 NSG mouse model would be
maintained in the presence of tacrolimus. In a 2-week pilot study
using tacrolimus doses ranging from 0.1 to 2mg/kg/day, doses over
0.5mg/kg/day resulted in weight loss >20% and GvHD-like
symptoms in mice (not shown). It has been described that tacrolimus
induces hypertension and has a nephrotoxic effect in mice [30, 31].
Mice that received PBMCs plus tacrolimus (0.5mg/kg/day) showed a
statistically significant reduction in the number of PBMCs found in
the spleen in comparison to mice that received PBMCs only
(mean ± SEM 5.87 × 105 ± 4.76 × 105 human CD45+ cells versus
2.19 × 106 ± 4.07 × 105 human CD45+ cells, respectively) (Fig. 9A)
indicating that this dose was sufficient to reduce PBMC engraftment.
In mice that received TX200-TR101 Tregs, the engraftment of cells in
spleen was not impaired and was significantly increased in mice
injected with tacrolimus (1.24 × 105 ± 2.44 × 104 CD4+FOXP3+ cells
versus 2.73 × 105 ± 4.40 × 104 CD4+FOXP3+, respectively) (Fig. 9B).
No effect of tacrolimus was seen on FOXP3 expression in CD4+ HLA-
A*02-negative cells (i.e. TX200-TR101 Tregs), with 93.5% of CD4+ cells
expressing FOXP3 in the spleen in untreated mice compared to over
94% of CD4+ cells expressing FOXP3 after 2-week treatment,
indicating no impairment of Treg stability (not shown).

DISCUSSION
Functionality of TX200-TR101 Tregs could be shown in vitro and
in vivo, demonstrating efficacy of the clinical candidate to induce
immunosuppression, in line with the results observed with a
previous proof-of-concept study [8]. In vitro, TX200-TR101 Tregs
could be activated specifically by their target antigen HLA-A*02
and were able to suppress Tconv proliferation once activated.
When co-cultured with characterized human PBMCs, TX200-TR101
Tregs were activated by all tested HLA-A*02 alleles and showed no
cross-reactivity with other tested alleles, demonstrating specificity
towards the HLA-A*02 antigen. The lack of activation by HLA-
A*02-negative PBMCs also indirectly implies that there was no
cross-reactivity with other HLA subtypes expressed by these cells.
The proof-of-concept study observed binding of the ScFv from
which the clinical candidate was derived to HLA-A*68, HLA-A*25,
and HLA-A*69 in a bead assay [8]. However, it was also shown that
the binding to these antigens was largely reduced compared to
the original mouse HLA-A*02 ScFv (BB7.2). In our experiments,
TX200-TR101 Tregs showed no relevant cellular activation by HLA-
A*68 or HLA-A*25 (HLA-A*69 PBMCs could not be obtained as the
haplotype is very rare) suggesting that the residual binding
observed in a bead assay is not sufficient to induce the activation
of the cells. As cross-reactivity to HLA-A*69 could not be assessed,
subjects carrying this specific HLA-A allele will be excluded from
the clinical trial.Humanized mouse models are well established
tools to study human Treg function in vivo and have been used to
successfully investigate their role in prevention of xenogeneic
GvHD [32] and rejection of various xenografts such as skin, islets,
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and arteries [33]. In the xenogeneic GvHD model, TX200-TR101
Tregs reduced proinflammatory effector T cell activity, as shown
by prevention of the engraftment, expansion, and activity of
cytotoxic and proinflammatory T cells and thus prevented GvHD
onset. It was demonstrated that TX200-TR101 Tregs were more
potent at preventing GvHD than polyclonal Tregs as it was
previously shown in other published studies (by [8, 10] and more
recently by [11, 34]).
A human skin transplant model was also analyzed, due to its

technical feasibility, the possibility to transplant human material,
and for its comparability to other published studies using HLA-
A*02 CAR-Tregs [7–9]. Although TX200-TR101 Tregs were mini-
mally effective in preventing transplant rejection, they specifically
localized to the HLA-A*02-positive human skin graft. It has been
shown that it is notoriously difficult to reduce skin graft rejection
in NSG mice. In NSG mice, human skin transplants develop an
inflammatory infiltrate consisting predominately of host Gr1+ cells
that is detrimental to the survival of human endothelium in the
graft [35]. In fact, we observed that the human skin grafts on mice
that did not receive PBMCs showed microscopic signs of fibrosis,
mixed leukocyte infiltration consisting primarily of macrophages,
inflammation and proliferation in the dermis, and hyperkeratosis
of the epidermis. These findings were exacerbated in mice that
received PBMCs. This infiltration of Gr1+ cells and damage to the
skin graft caused by these cells could not be reversed by TX200-
TR101, hence the minimal effect seen on the graft rejection score.
For the mice that received TX200-TR101 alone, skin graft histology
score was also increased at day 35. It was observed that in this
group, skin grafts showed some increased infiltration by
neutrophils and macrophages and signs of inflammation. This
phenomenon has been described in a publication from Moreau
et al., where it was reported that Tregs promote innate
inflammation after skin barrier breach via transforming growth
factor-β activation [36]. This publication also showed that Tregs in
skin could attract neutrophils towards injured skin and thus delay
epidermal regeneration. However, it was observed that skin graft
rejection was delayed in mice receiving TX200-TR101.The findings
were not related to poor functional capacity of the TX200-TR101
Tregs used in these experiments as they effectively prevented
GvHD onset in NSG mice.
Biodistribution and safety of the clinical candidate were

assessed in a variety of in vitro and in vivo studies, of which the
most relevant are presented in this publication. Whilst no
appropriate in vivo tumorigenicity model is available, in vitro

experiments did not show evidence for tumorigenicity. TX200-
TR101 Tregs depended on IL-2 for survival and growth and
became senescent during chronic stimulation. Only trace levels of
contaminant non-Treg CAR-T cells were found in TX200-TR101
preparations, indicating a favorable ratio of Tregs over Tconvs.
FOXP3 TSDR hypomethylation can identify Tregs [25, 26]. We
found cells with a minimum of 80% TSDR hypomethylation were
safe and efficacious in GvHD prevention. First-generation TX200-
TR100 Tregs using a previous sorting strategy had low hypo-
methylation and caused rapid GvHD onset.
No major safety concerns arose in a 3-month safety and

bioavailability study following a single intravenous administration
of TX200-TR101 in humanized HLA-A*02 NSG mice. Only one of 24
analyzed mice developed GvHD and only one tumor was
observed. The tumor was an osteosarcoma, probably of mouse
origin, with a low level of CAR-Treg infiltrate. The infiltrate might
have been circulating CAR-Tregs, as the tumor was highly
vascularized and not perfused before harvesting. Of note, a
longer study duration would have been beneficial for tumor-
igenicity assessment, but it was not expected initially that TX200-
TR101 would have such a long persistence in the absence of
human IL-2.
The distribution of human HLA-A*02 CAR-Tregs cells in the

humanized HLA-A*02 NSG mice was consistent with literature
describing that intravenous injection of cells in mice results in
their capture in the pulmonary vasculature, due to the anatomical
localization of the lung as the first capillary bed post intravenous
injection, with cells redistributing later mainly to well vascularized
organs such as the spleen, liver, and kidney [37–39]. TX200-TR101
infiltrated mainly the lung, as first point of entry from blood, then
spleen and liver, and engaged with their target antigen HLA-A*02
that resulted in their activation and proliferation. Histopathology
showed congestion and infiltration of lung, also consistent with
the injection by intravenous route and with the engagement and
retention of HLA-A*02 CAR-Tregs by interaction with HLA-A*02
expressed on lung endothelium. Histopathologic findings also
indicated extramedullary hematopoiesis in the spleen, likely due
to expansion of TX200-TR101 Tregs following recognition of
splenic HLA-A*02. Reassuringly, only very few TX200-TR101 Tregs
were found in the heart, brain, and reproductive tract.
Treg senescence was assessed in an in vitro model consisting of

chronic stimulation via their TCR in the presence of high-dose IL-2.
This assay showed that constant Treg stimulation induced the
increase of TEMRA cells. After 54 days in culture, CD4+ Tregs
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expressed low levels of the senescence markers CD57 and KLRG1
whereas acidic β-galactosidase activity (SA-β-Gal) was increased.
CD57 and KLRG1 are commonly used as senescence markers in
CD4+ and CD8+ T cells to assess T cells fitness after Ebola
vaccination [40], in cancer [41] or autoimmunity [42], but their
relevance in Tregs is not well defined. However, the SA-β-Gal
marker was used in a model of aging mice to assess the
senescence status of Tregs [43]. In the biodistribution study,
3 months post-administration of TX200-TR101, the number of cells
recovered in tissues was too low to reliably perform the SA-β-Gal
test or analyze the level of CD57 and KLRG1 expression. Due to
these limitations, more work will be required to validate whether
these markers could be used to assess the senescence status of
CAR Tregs in humanized mouse models.
One concern in Treg immunotherapy is a lack of Treg stability

and potential conversion into a pro-inflammatory phenotype [3].
In the 3-month in vivo study, TX200-TR101 Tregs demonstrated
in vivo persistence and a stable phenotype in terms of FOXP3
expression and a lack of proinflammatory cytokine production. As
Tregs rely on IL-2 [44], it was unexpected that TX200-TR101 Tregs
persisted up to month 3 in the mice without IL-2 administration,
demonstrating they only require a low level of IL-2 to survive. Of
note, injection of TX200-TR101 in NSG mice devoid of the HLA-
A*02 transgene did not result in cell engraftment. In this setting,
cells rapidly disappeared in blood and spleen, indicating that they
require CAR-mediated signaling to survive in the absence of IL-2
(data not shown). More work would be required to understand
which type of signals the CAR-Tregs receive in vivo to survive.

Noteworthy, our planned Phase 1/2 trial is expected to be the
first to evaluate CAR-Tregs in humans. In clinical trials with
polyclonal and non-genetically-modified, antigen-specific Tregs,
no severe or life-threatening acute toxicities, nor increases in the
number of opportunistic infections or de-novo malignancies have
been reported to date [4, 5]. The recently published ONE Study
evaluated 28 kidney transplant recipients treated with polyclonal
(n= 23) or donor-reactive (n= 5) Tregs, compared with 70
recipients receiving standard immunosuppressive therapy [5].
Combined adverse event and acute rejection data in the ONE
Study revealed no safety concerns. No differences in biopsy-
confirmed acute rejection rates were observed between Treg and
conventional therapy groups – notably using mostly polyclonal
non-allospecific Tregs that are expected to have a considerably
lower efficacy compared to antigen-targeted Tregs. One of the
individual trials analyzed within the ONE Study found a trend
towards a reduced rejection rate in the Treg group compared to
the reference group [45]. Of note, 40% of patients receiving cell-
based therapies in the ONE Study could taper immunosuppressive
treatments to monotherapy whilst most patients in the reference
group continued at least on dual immunosuppression, and a lower
rate of infections was observed with cell-based therapies [5].
In oncology settings, CAR-modified T cell therapies using

autologous Tconv have shown significant acute toxicities, mostly
related to cytokine release syndrome, occurring when large
numbers of CAR-Tconv are activated to release a variety of
proinflammatory cytokines and chemokines [6]. Cytokine release
syndrome has not been described to date in studies utilizing
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polyclonal or antigen-specific Treg therapies [4, 5], likely explained
by the differing mechanism of action of Tregs that inhibit
inflammatory responses by releasing immunomodulatory cyto-
kines in contrast to the proinflammatory properties of Tconv.
Quality assessments of our clinical candidate TX200-TR101 have
detected only trace levels of Tconv in the cell product and strict
release criteria will ensure a favorable ratio of Tregs over Tconv to
minimize the risk of Tconv transduction, thereby further reducing
the risk of strong immune activation and proinflammatory
cytokine release.
Tacrolimus is a standard-of-care immunosuppressant in solid

organ transplantation [29]. It inhibits T cell proliferation in
response to ligation of the TCR, impairs T-cell-mediated cytotoxi-
city, and has been described as deleterious to the survival of Tregs.
Whilst showing some toxicity with GvHD-like symptoms in a GvHD
mouse model, tacrolimus did not impair survival of TX200-TR101
Tregs. Surprisingly, tacrolimus promoted Treg engraftment in vivo.
Such an effect on the Treg population had been previously
observed in patients with atopic dermatitis treated with low dose
of cyclosporin A, another calcineurin inhibitor [46]. These patients
showed a significant increase of the CD4+/CD25+/CD127low Treg
population with similar suppressive activity in comparison to non-
treated patients. It was concluded that there was no significant
risk of drug interaction that would preclude using tacrolimus in
the planned Phase 1/2 trial. Tacrolimus will be administered to all
patients in the planned trial as standard of care.
In conclusion, preclinical experiments have shown that TX200-

TR101 is specific, stable, efficacious, and safe, and its function is
not expected to be impaired by concomitant tacrolimus
treatment. These data, supported by clinical experience with
other experimental Treg therapies, provided the basis for a Clinical

Trial Application for the first-in-human study of TX200-TR101 in
mismatched-donor renal transplant recipients (STEADFAST study,
EudraCT 2019-001730-34). This open-label, single ascending dose,
dose-ranging, Phase 1/2a study in HLA-A*02-negative subjects
awaiting the receipt of a kidney transplant from an HLA-A*02-
positive donor was initiated in 2021.

DATA AVAILABILITY
All data generated or analysed during this study are included in this published article
[and its supplementary information files].
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