Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Curing SMA: Are we there yet?

Abstract

Loss or deletion of survival motor neuron 1 gene (SMN1) is causative for a severe and devastating neuromuscular disease, Spinal Muscular Atrophy (SMA). SMN1 produces SMN, a ubiquitously expressed protein, that is essential for the development and survival of motor neurons. Major advances and developments in SMA therapeutics are shifting the natural history of the disease. With three relatively new available therapies, nusinersen (Spinraza), onasemnogene abeparvovec (Zolgensma), and risdiplam (Evrysdi), patients survive longer and have improved outcomes. However, patients and families continue to face many challenges associated with use of these therapies, including poor treatment response and a variability in the benefits to those that do respond, suggesting that the quest for the SMA cure is not over. In this review, we discuss the current therapies, their limitations, and highlight necessary gaps that need to be addressed to guarantee the best outcomes for SMA patients.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Summary of SMA types, and the observed and projected change in the natural history of SMA due to now available treatments.
Fig. 2: Summary of the three SMN-targeted therapies approved for the treatment of SMA by the Food and Drug Administration (FDA) and the European Medicine Agency (EMA) and corresponding clinic trials.
Fig. 3: Timeline of Spinraza (nusinersen) clinical trials.
Fig. 4: Timeline of Zolgensma (onasemnogene abeparvovec) clinical trials.

References

  1. Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs EM, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: Clinical laboratory analysis of >72 400 specimens. Eur J Hum Gen. 2012;20:27–32.

    Article  Google Scholar 

  2. Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy–A literature review. Orphanet J Rare Dis. 2017;12:124–49.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–65.

    CAS  PubMed  Article  Google Scholar 

  4. Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci (USA). 1999;96:6307–11.

    CAS  Article  Google Scholar 

  5. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AHM, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999;8:1177–83.

    CAS  PubMed  Article  Google Scholar 

  6. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightcycler PCR: Fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Amer J Hum Gen. 2002;70:358–68.

    Article  Google Scholar 

  7. Hale K, Ojodu J, Singh S. Landscape of spinal muscular atrophy newborn screening in the united states: 2018–2021. Int J Neonatal Screening. 2021;7:1–10.

    Google Scholar 

  8. Fontoura P. SMA screening for newborns in Europe. F. Hoffmann-La Roche; 2022. https://www.roche.com/stories/sma-screening-for-newborns-in-europe.

  9. Kirschner J, Darras B, Farrar M, Mercuri E, Chiriboga C, Kuntz N, et al. Interim report on the safety and efficacy of longer-term treatment with nusinersen in later-onset spinal muscular atrophy (SMA): results from the SHINE study. Neuromuscular Disorders. 2022;29:S184.

    Article  Google Scholar 

  10. Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Therapy. 2017;24:520–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 2010;24:1634–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Darrow JJ, Sharma M, Shroff M, Wagner AK. Efficacy and costs of spinal muscular atrophy drugs. Sci Trans Med. 2020;12:1–3.

    Article  CAS  Google Scholar 

  13. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice. Amer J Hum Gen. 2008;82:834–48.

    CAS  Article  Google Scholar 

  14. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Trans Med. 2011;3:1–21.

    Article  Google Scholar 

  15. Haché M, Swoboda KJ, Sethna N, Farrow-Gillespie A, Khandji A, Xia S, et al. Intrathecal Injections in Children with Spinal Muscular Atrophy: Nusinersen Clinical Trial Experience. J Child Neurol. 2016;31:899–906.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Darras BT, Chiriboga CA, Iannaccone ST, Swoboda KJ, Montes J, Mignon L, et al. Nusinersen in later-onset spinal muscular atrophy: Long-term results from the phase 1/2 studies. Neurology. 2019;92:e2492–e2506.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Ebinger F, Kosel C, Pietz J, Rating D. Headache and backache after lumbar puncture in children and adolescents: a prospective study. Pediatrics. 2004;113:1588–92.

    PubMed  Article  Google Scholar 

  18. Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, de Vivo DC, et al. Results from a phase 1 study of nusinersen (ISIS-SMN Rx) in children with spinal muscular atrophy. Neurology. 2016;86:890–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, de Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388:3017–26.

    CAS  PubMed  Article  Google Scholar 

  20. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, de Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: final report of a phase 2, open-label, multicentre, dose-escalation study. Lancet Child Adolescent Health. 2021;5:491–500.

    CAS  PubMed  Article  Google Scholar 

  21. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. New Engl J Med. 2017;377:1723–32.

    CAS  PubMed  Article  Google Scholar 

  22. Darras BT, Farrar MA, Mercuri E, Finkel RS, Foster R, Hughes SG, et al. An Integrated Safety Analysis of Infants and Children with Symptomatic Spinal Muscular Atrophy (SMA) Treated with Nusinersen in Seven Clinical Trials. CNS Drugs. 2019;33:919–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N Engl J Med. 2018;378:625–35.

    CAS  PubMed  Article  Google Scholar 

  24. Acsadi G, Crawford TO, Müller-Felber W, Shieh PB, Richardson R, Natarajan N, et al. Safety and efficacy of nusinersen in spinal muscular atrophy: The EMBRACE study. Muscle Nerve. 2021;63:668–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. de Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscular Disord. 2019;29:842–56.

    Article  Google Scholar 

  26. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotech. 2009;27:59–65.

    CAS  Article  Google Scholar 

  27. Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotech. 2010;28:271–4.

    CAS  Article  Google Scholar 

  28. Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ, et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Trans Med. 2010;2:35–42.

    Article  CAS  Google Scholar 

  29. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017;377:1713–22.

    CAS  PubMed  Article  Google Scholar 

  30. Mendell JR, Al-Zaidy SA, Lehman KJ, McColly M, Lowes LP, Alfano LN, et al. Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA Neurol. 2021;78:834–41.

    PubMed  Article  Google Scholar 

  31. Gyngell C, Stark Z, Savulescu J. Drugs, genes and screens: the ethics of preventing and treating spinal muscular atrophy. Bioethics. 2020;34:493–501.

    PubMed  Article  Google Scholar 

  32. Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20:832–41.

    CAS  PubMed  Article  Google Scholar 

  33. Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. The Lancet Neurol. 2021;20:284–93.

    CAS  PubMed  Article  Google Scholar 

  34. Strauss KA, Swoboda KJ, Farrar MA, McMillan HJ, Parsons J, Krueger JM, et al. Onasemnogene abeparvovec gene-replacement therapy (GRT) in presymptomatic spinal muscular atrophy (SMA): SPR1NT study update. Journal of the Neurological Sciences. 2022;405:268–9.

    Article  Google Scholar 

  35. Ratni H, Ebeling M, Baird J, Bendels S, Bylund J, Chen KS, et al. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem. 2018;61:6501–17.

    CAS  PubMed  Article  Google Scholar 

  36. Poirier A, Weetall M, Heinig K, Bucheli F, Schoenlein K, Alsenz J, et al. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect. 2018;6:1–12.

    Article  CAS  Google Scholar 

  37. Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, Rose K, Xiong H, Zanoteli E, et al. Risdiplam-Treated Infants with Type 1 Spinal Muscular Atrophy versus Historical Controls. N Engl J Med. 2021;385:427–35.

    CAS  PubMed  Article  Google Scholar 

  38. Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, et al. Risdiplam in Type 1 Spinal Muscular Atrophy. N Engl J Med. 2021;384:915–23.

    CAS  PubMed  Article  Google Scholar 

  39. Mercuri E, Deconinck N, Mazzone ES, Nascimento A, Oskoui M, Saito K, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2022;21:42–52.

    CAS  PubMed  Article  Google Scholar 

  40. Hoffman E, Dang U, Clemens P, Gordish-Dressman H, Schwartz B, Mengle-Gaw L, et al. CLINICAL TRIAL HIGHLIGHTS: O.4 RAINBOWFISH: A study of risdiplam in infants with presymptomatic spinal muscular atrophy (SMA). Neuromuscular Disord. 2021;31:S48.

    Article  Google Scholar 

  41. Elsheikh B, Severyn S, Zhao S, Kline D, Linsenmayer M, Kelly K, et al. Safety, Tolerability, and Effect of Nusinersen in Non-ambulatory Adults With Spinal Muscular Atrophy. Front Neurol. 2021;12:1–9.

    Google Scholar 

  42. Duong T, Wolford C, McDermott MP, Macpherson CE, Pasternak A, Glanzman AM, et al. Nusinersen Treatment in Adults With Spinal Muscular Atrophy. Neurol Clin Pract. 2021;11:e317–27.

    PubMed  PubMed Central  Article  Google Scholar 

  43. Pane M, Palermo C, Messina S, Sansone VA, Bruno C, Catteruccia M, et al. Nusinersen in type 1 SMA infants, children and young adults: Preliminary results on motor function. Neuromuscular Disord. 2018;28:582–5.

    Article  Google Scholar 

  44. Walter MC, Wenninger S, Thiele S, Stauber J, Hiebeler M, Greckl E, et al. Safety and Treatment Effects of Nusinersen in Longstanding Adult 5q-SMA Type 3 – A Prospective Observational Study. J Neuromuscular Dis. 2019;6:453–65.

    Article  Google Scholar 

  45. Chaytow H, Faller KME, Huang YT, Gillingwater TH. Spinal muscular atrophy: From approved therapies to future therapeutic targets for personalized medicine. Cell Rep Med. 2021;2:1–19.

    Google Scholar 

  46. Hua Y, Liu YH, Sahashi K, Rigo F, Frank Bennett C, Krainer AR. Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev. 2015;29:288–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett CF, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature. 2011;478:123–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Besse A, Astord S, Marais T, Roda M, Giroux B, Lejeune FX, et al. AAV9-Mediated Expression of SMN Restricted to Neurons Does Not Rescue the Spinal Muscular Atrophy Phenotype in Mice. Mol Ther. 2020;28:1887–901.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Deguise MO, Baranello G, Mastella C, Beauvais A, Michaud J, Leone A, et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Annals Clin Trans Neurol. 2019;6:1519–32.

    CAS  Article  Google Scholar 

  50. Crawford TO, Sladky JT, Hurko O, Besner-Johnston A, Kelley RI. Abnormal fatty acid metabolism in childhood spinal muscular atrophy. Ann Neurol. 1999;45:337–43.

    CAS  PubMed  Article  Google Scholar 

  51. Chand D, Mohr F, McMillan H, Tukov FF, Montgomery K, Kleyn A, et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol. 2021;74:560–6.

    CAS  PubMed  Article  Google Scholar 

  52. Hinderer C, Bell P, Katz N, Vite CH, Louboutin JP, Bote E, et al. Evaluation of Intrathecal Routes of Administration for Adeno-Associated Viral Vectors in Large Animals. Hum Gene Ther. 2018;29:15–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Hinderer C, Katz N, Dyer C, Goode T, Johansson J, Bell P, et al. Translational Feasibility of Lumbar Puncture for Intrathecal AAV Administration. Mol Ther - Meth Clin Dev. 2020;17:969–74.

    CAS  Article  Google Scholar 

  54. van Alstyne M, Tattoli I, Delestrée N, Recinos Y, Workman E, Shihabuddin LS, et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021;24:930–40.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. Kakazu J, Walker NL, Babin KC, Trettin KA, Lee C, Sutker PB, et al. Risdiplam for the Use of Spinal Muscular Atrophy. Orthopedic Rev. 2021;384:915–23.

    Google Scholar 

  56. Ottesen EW, Howell MD, Singh NN, Seo J, Whitley EM, Singh RN. Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy. Sci Rep. 2016;6:20193.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Olsson B, Alberg L, Cullen NC, Michael E, Wahlgren L, Kroksmark AK, et al. NFL is a marker of treatment response in children with SMA treated with nusinersen. J Neurol. 2019;266:2129–36.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomarker Insights. 2021;16:1–14.

    Article  Google Scholar 

  59. Study of Nusinersen (BIIB058) in Participants With Spinal Muscular Atrophy. ClinicalTrials.gov. 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04089566.

  60. Harada Y, Rao VK, Arya K, Kuntz NL, DiDonato CJ, Napchan-Pomerantz G, et al. Combination molecular therapies for type 1 spinal muscular atrophy. Muscle Nerve. 2020;62:550–4.

    CAS  PubMed  Article  Google Scholar 

  61. Chiriboga CA, Bruno C, Duong T, Fischer D, Kirschner J, Mercuri E, et al. JEWELFISH: Safety and Pharmacodynamic Data in Non-Naïve Patients with Spinal Muscular Atrophy (SMA) Receiving Treatment with Risdiplam (2316). Neurology. 2022;96:S187.

    Google Scholar 

  62. A Study of Nusinersen Among Participants With Spinal Muscular Atrophy Who Received Onasemnogene Abeparvovec. ClinicalTrials.gov. 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04488133.

  63. A Study to Evaluate Higher Dose (HD) Nusinersen (BIIB058) in Participants With Spinal Muscular Atrophy Previously Treated With Risdiplam. ClinicalTrials.gov. 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05067790.

  64. Armbruster N, Lattanzi A, Jeavons M, van Wittenberghe L, Gjata B, Marais T, et al. Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy. Mol Ther - Meth Clin Dev. 2016;3:1–8.

    Article  CAS  Google Scholar 

  65. Thomsen G, Burghes AHM, Hsieh C, Do J, Chu BTT, Perry S, et al. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat Med. 2021;27:1701–11.

    CAS  PubMed  Article  Google Scholar 

  66. Wirth B, Garbes L, Riessland M. How genetic modifiers influence the phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Curr Opin Genet Dev. 2013;23:330–8.

    CAS  PubMed  Article  Google Scholar 

  67. Motyl AAL, Faller KME, Groen EJN, Kline RA, Eaton SL, Ledahawsky LM, et al. Pre-natal manifestation of systemic developmental abnormalities in spinal muscular atrophy. Hum Mol Gen. 2020;29:2674–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Martínez-Hernández R, Bernal S, Also-Rallo E, Alías L, Barcelõ M, Hereu M, et al. Synaptic defects in type i spinal muscular atrophy in human development. J Pathol. 2013;229:49–61.

    PubMed  Article  CAS  Google Scholar 

  69. Burlet P, Huber C, Bertrandy S, Ludosky MA, Zwaenepoel I, Clermont O, et al. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Gen. 1998;7:1927–33.

    CAS  PubMed  Article  Google Scholar 

  70. Hensel N, Kubinski S, Claus P. The Need for SMN-Independent Treatments of Spinal Muscular Atrophy (SMA) to Complement SMN-Enhancing Drugs. Front Neurol. 2020;11:45.

    PubMed  PubMed Central  Article  Google Scholar 

  71. Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D, et al. Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Investig. 2008;118:3316–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Su CF, Chang LH, Kao CY, Lee DC, Cho KH, Kuo LW, et al. Application of amniotic fluid stem cells in repairing sciatic nerve injury in minipigs. Brain Res. 2018;1678:387–406.

    Article  CAS  Google Scholar 

  73. Pepper JP, Wang TV, Hennes V, Sun SY, Ichida JK. Human induced pluripotent stem cell-derived motor neuron transplant for neuromuscular atrophy in a mouse model of sciatic nerve injury. JAMA Facial Plastic Surgery. 2017;19:197–205.

    PubMed  Article  Google Scholar 

  74. Corti S, Locatelli F, Papadimitriou D, Donadoni C, del Bo R, Crimi M, et al. Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Gen. 2006;15:167–87.

    CAS  PubMed  Article  Google Scholar 

  75. Courtney NL, Mole AJ, Thomson AK, Murray LM. Reduced P53 levels ameliorate neuromuscular junction loss without affecting motor neuron pathology in a mouse model of spinal muscular atrophy. Cell Death Dis. 2019;10:1–14.

    Article  Google Scholar 

  76. Kim JK, Caine C, Awano T, Herbst R, Monani UR. Motor neuronal repletion of the NMJ organizer, Agrin, modulates the severity of the spinal muscular atrophy disease phenotype in model mice. Hum Mol Genet. 2017;26:2377–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Tezuka T, Inoue A, Hoshi T, Weatherbee SD, Burgess RW, Ueta R, et al. The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses. Proc Natl Acad Sci (USA). 2014;111:16556–61.

    CAS  Article  Google Scholar 

  78. Clausen L, Cossins J, Beeson D. Beta-2 Adrenergic Receptor Agonists Enhance AChR Clustering in C2C12 Myotubes: implications for Therapy of Myasthenic Disorders. J Neuromuscul Dis. 2018;5:231–40.

    PubMed  PubMed Central  Article  Google Scholar 

  79. Rudnicki SA, Andrews JA, Duong T, Cockroft BM, Malik FI, Meng L, et al. Correction to: Reldesemtiv in Patients with Spinal Muscular Atrophy: a Phase 2 Hypothesis-Generating Study. Neurotherapeutics. 2021;18:1127–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Pirruccello-Straub M, Jackson J, Wawersik S, Webster MT, Salta L, Long K, et al. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep. 2018;8:1–15.

    CAS  Article  Google Scholar 

  81. Barrett, Bilic S, Chyung Y, Cote S, Iarrobino R, Kacena K, et al. A Randomized Phase 1 Safety, Pharmacokinetic and Pharmacodynamic Study of the Novel Myostatin Inhibitor Apitegromab (SRK-015): a Potential Treatment for Spinal Muscular Atrophy. Adv Ther. 2021;38:3203–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Long KK, O’Shea KM, Khairallah RJ, Howell K, Paushkin S, Chen KS, et al. Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Hum Mol Genet. 2019;28:1076–89.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We are thankful for our laboratory members and the colleagues who work in this field for their important contributions.

Funding

This work was supported by Cure SMA/Families of SMA Canada (Grant number KOT-1819 and KOT-2021); Muscular Dystrophy Association Inc. (USA) (Grant number 575466); and Canadian Institutes of Health Research (CIHR) (Grant number PJT-156379). A.R is supported by a uOttawa Eric Poulin Centre for Neuromuscular Disease (CNMD) Scholarship in Translational Research Award. LC is supported by a CIHR Vanier Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

AR, LC, and RK wrote the paper. All authors have read and agreed to the published version of the paper.

Corresponding author

Correspondence to Rashmi Kothary.

Ethics declarations

Competing interests

RK and the Ottawa Hospital Research Institute have a licensing agreement with Biogen for the Smn2B/ mouse model. This COI is outside the scope of this study. All other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reilly, A., Chehade, L. & Kothary, R. Curing SMA: Are we there yet?. Gene Ther (2022). https://doi.org/10.1038/s41434-022-00349-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-022-00349-y

Search

Quick links