Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overexpressed ski efficiently promotes neurorestoration, increases neuronal regeneration, and reduces astrogliosis after traumatic brain injury

Abstract

Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36–55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamics of the lesion cavity volume after moderate TBI.
Fig. 2: Spatiotemporal protein level and distribution of Ski after TBI.
Fig. 3: Overexpression of exogenous ski after adenovirus-mediated transfection.
Fig. 4: Reduced lesion cavity volume after ski-overexpressing adenovirus treatment.
Fig. 5: Mitigated neurobehavioral deficits after ski-overexpressing adenovirus treatment.
Fig. 6: Increased number of newborn neurons after ski-overexpressing adenovirus treatment.
Fig. 7: Reduced astrogliosis after ski-overexpressing adenovirus treatment.
Fig. 8: Changes in the proliferation of immature neurons after ski overexpression in vitro.
Fig. 9: Changes in the proliferation of astrocytes after ski overexpression in vitro.

Similar content being viewed by others

Data availability

Data are available on request due to privacy/ethical restrictions. The data that support the findings of this study are available on request from the corresponding author.

References

  1. Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V, et al. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011;134:449–63.

    Article  PubMed  Google Scholar 

  2. McArthur D, Chute D, Villablanca J. Moderate and severe traumatic brain injury: epidemiologic, imaging and neuropathologic perspectives. Brain Pathol. 2004;14:185–94.

    Article  PubMed  Google Scholar 

  3. Stein M, Jain S, Giacino J, Levin H, Dikmen S, Nelson L, et al. Risk of posttraumatic stress disorder and major depression in civilian patients after mild traumatic brain injury: a TRACK-TBI study. JAMA Psychiatry. 2019;76:249–58.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baker EW, Kinder HA, Hutcheson JM, Duberstein KJJ, Platt SR, Howerth EW, et al. Controlled cortical impact severity results in graded cellular, tissue, and functional responses in a piglet traumatic brain injury model. J Neurotrauma. 2019;36:61–73.

    Article  PubMed  Google Scholar 

  5. Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Front Neurosci. 2016;10:584.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Neckel N, Dai H, Burns M. A novel multi-dimensional analysis of rodent gait reveals the compensation strategies used during spontaneous recovery from spinal cord and traumatic brain injury. J Neurotrauma. 2020;37:517–27.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Umschweif G, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Hypoxia-inducible factor 1 is essential for spontaneous recovery from traumatic brain injury and is a key mediator of heat acclimation induced neuroprotection. J Cereb Blood Flow Metab. 2013;33:524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–60.

    Article  CAS  PubMed  Google Scholar 

  9. Ngwenya LB, Danzer SC. Impact of traumatic brain injury on neurogenesis. Front Neurosci. 2018;12:1014.

    Article  PubMed  Google Scholar 

  10. Patel K, Sun D. Strategies targeting endogenous neurogenic cell response to improve recovery following traumatic brain injury. Brain Res. 2016;1640:104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.

    Article  PubMed  Google Scholar 

  12. Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci USA. 2005;102:8333–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Witcher K, Bray C, Dziabis J, McKim D, Benner B, Rowe R, et al. Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia. 2018;66:2719–36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xiong Y, Mahmood A, Chopp M. Neurorestorative treatments for traumatic brain injury. Discov Med. 2010;10:434–42.

    PubMed  PubMed Central  Google Scholar 

  15. Maas A, Roozenbeek B, Manley G. Clinical trials in traumatic brain injury: past experience and current developments. Neurotherapeutics. 2010;7:115–26.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao L. Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant. 2017;26:1118–30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Turck CM, Teumer JK, Stavnezer E. Unique sequence, ski, in Sloan-Kettering avian retroviruses with properties of a new cell-derived oncogene. J Virol. 1986;57:1065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Li P, Liu P, Xiong R, Zhang E, Chen X, et al. The essential role for c-Ski in mediating TGF-beta1-induced bi-directional effects on skin fibroblast proliferation through a feedback loop. Biochem J. 2008;409:289–97.

    Article  CAS  PubMed  Google Scholar 

  19. Soeta C, Suzuki M, Suzuki S, Naito K, Tachi C, Tojo H. Possible role for the c-ski gene in the proliferation of myogenic cells in regenerating skeletal muscles of rats. Dev Growth Differ. 2001;43:155–64.

    Article  CAS  PubMed  Google Scholar 

  20. Macias-Silva M, Li W, Leu JI, Crissey MA, Taub R. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. J Biol Chem. 2002;277:28483–90.

    Article  CAS  PubMed  Google Scholar 

  21. Reyes-Gordillo K, Shah R, Arellanes-Robledo J, Hernández-Nazara Z, Rincón-Sánchez AR, Inagaki Y, et al. Mechanisms of action of acetaldehyde in the up-regulation of the human α2(I) collagen gene in hepatic stellate cells: key roles of Ski, SMAD3, SMAD4, and SMAD7. Am J Pathol. 2014;184:1458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, Uchida C, et al. Ubiquitin-dependent degradation of SnoN and Ski is increased in renal fibrosis induced by obstructive injury. Kidney Int. 2006;69:1733–40.

    Article  PubMed  Google Scholar 

  23. Zhang C, Zhang Y, Zhu H, Hu J, Xie Z. MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro. Cell Signal. 2018;46:145–53.

    Article  PubMed  Google Scholar 

  24. Bonnon C, Atanasoski S. c-Ski in health and disease. Cell Tissue Res. 2011;347:51–64.

    Article  PubMed  Google Scholar 

  25. Liu X, Li P, Chen XY, Zhou YG. c-Ski promotes skin fibroblast proliferation but decreases type I collagen: implications for wound healing and scar formation. Clin Exp Dermatol. 2010;35:417–24.

    Article  CAS  PubMed  Google Scholar 

  26. Li P, Liu P, Xiong RP, Chen XY, Zhao Y, Lu WP, et al. Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear. J Pathol. 2011;223:659–71.

    Article  CAS  PubMed  Google Scholar 

  27. Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, et al. The protooncogene Ski controls Schwann cell proliferation and myelination. Neuron. 2004;43:499–511.

    Article  CAS  PubMed  Google Scholar 

  28. Lyons GE, Micales BK, Herr MJ, Horrigan SK, Namciu S, Shardy D, et al. Protooncogene c-ski is expressed in both proliferating and postmitotic neuronal populations. Dev Dyn. 1994;201:354–65.

    Article  CAS  PubMed  Google Scholar 

  29. Baranek C, Atanasoski S. Modulating epigenetic mechanisms: the diverse functions of Ski during cortical development. Epigenetics. 2012;7:676–9.

    Article  CAS  PubMed  Google Scholar 

  30. Berk M, Desai SY, Heyman HC, Colmenares C. Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial patterning, and skeletal muscle development. Genes Dev. 1997;11:2029–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colmenares C, Heilstedt HA, Shaffer LG, Schwartz S, Berk M, Murray JC, et al. Loss of the SKI proto-oncogene in individuals affected with 1p36 deletion syndrome is predicted by strain-dependent defects in Ski-/- mice. Nature Genet. 2002;30:106–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kratzer R, Kreppel F. Production, purification, and titration of first-generation adenovirus vectors. Methods Mol Biol. 2017;1654:377–88.

    Article  CAS  PubMed  Google Scholar 

  33. An C, Jiang X, Pu H, Hong D, Zhang W, Hu X, et al. Severity-dependent long-term spatial learning-memory impairment in a mouse model of traumatic brain injury. Transl Stroke Res. 2016;7:512–20.

    Article  PubMed  Google Scholar 

  34. Wang G, Jiang X, Pu H, Zhang W, An C, Hu X, et al. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT. Neurotherapeutics. 2013;10:124–42.

    Article  PubMed  Google Scholar 

  35. Siddiq I, Park E, Liu E, Spratt S, Surosky R, Lee G, et al. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma. 2012;29:2647–59.

    Article  PubMed  Google Scholar 

  36. Pan L, Shang N, Shangguan J, Figini M, Xing W, Wang B, et al. Magnetic resonance imaging monitoring therapeutic response to dendritic cell vaccine in murine orthotopic pancreatic cancer models. Am J Cancer Res. 2019;9:562–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Coutinho J, Ramos AF, Maia L, Castro L, Conceicao E, Geliebter A, et al. Volumetric alterations in the nucleus accumbens and caudate nucleus in bulimia nervosa: a structural magnetic resonance imaging study. Int J Eat Disord. 2015;48:206–14.

    Article  PubMed  Google Scholar 

  38. Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao D. Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci. 1999;64:1099–108.

    Article  CAS  PubMed  Google Scholar 

  39. Kim H, Yu T, Cam-Etoz B, van Groen T, Hubbard W, Chaudry I. Treatment of traumatic brain injury with 17α-ethinylestradiol-3-sulfate in a rat model. J Neurosurg. 2017;127:23–31.

    Article  CAS  PubMed  Google Scholar 

  40. Toshkezi G, Kyle M, Longo S, Chin L, Zhao L. Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. J Neurosurg. 2018;129:1286–94.

    Article  CAS  PubMed  Google Scholar 

  41. Zeng XJ, Li P, Ning YL, Zhao Y, Peng Y, Yang N, et al. Impaired autophagic flux is associated with the severity of trauma and the role of A2AR in brain cells after traumatic brain injury. Cell Death Dis. 2018;9:252.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Tang J, Xu X, Zhou X, Du J, Wang X, et al. NMDA receptors inhibit axonal outgrowth by inactivating Akt and activating GSK-3β via calcineurin in cultured immature hippocampal neurons. Exp Cell Res. 2018;371:389–98.

    Article  CAS  PubMed  Google Scholar 

  43. Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol. 2018;16:1224–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lazaridis C, Rusin C, Robertson C. Secondary brain injury: predicting and preventing insults. Neuropharmacology. 2019;145:145–52.

    Article  CAS  PubMed  Google Scholar 

  45. Bramlett HM, Dietrich WD. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma. 2015;32:1834–48.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bramlett HM, Dietrich WD. Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathol. 2002;103:607–14.

    Article  PubMed  Google Scholar 

  47. Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma. 2015;32:1861–82.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Urrea C, Castellanos D, Sagen J, Tsoulfas P, Bramlett H, Dietrich W. Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restor Neurol Neurosci. 2007;25:65–76.

    CAS  PubMed  Google Scholar 

  49. Villapol S, Byrnes KR, Symes AJ. Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury. Front Neurol. 2014;5:82.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sebastiani A, Gölz C, Werner C, Schäfer M, Engelhard K, Thal S. Proneurotrophin binding to P75 neurotrophin receptor (P75ntr) is essential for brain lesion formation and functional impairment after experimental traumatic brain injury. J Neurotrauma. 2015;32:1599–607.

    Article  PubMed  Google Scholar 

  51. Sîrbulescu R, Chung J, Edmiston W, Poznansky S, Poznansky M, Whalen M. Intraparenchymal application of mature B lymphocytes improves structural and functional outcome after contusion traumatic brain injury. J Neurotrauma. 2019;36:2579–89.

    Article  PubMed  Google Scholar 

  52. Liu X, Zhang E, Li P, Liu J, Zhou P, Gu D, et al. Expression and possible mechanism of c-ski, a novel tissue repair-related gene during normal and radiation-impaired wound healing. Wound Repair Regen. 2006;14:162–71.

    Article  PubMed  Google Scholar 

  53. Li J, Zhao L, Yang T, Zeng YJ, Yang K. c-Ski inhibits autophagy of vascular smooth muscle cells induced by oxLDL and PDGF. PLoS One. 2014;9:e98902.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sun D. The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injury. Neural Regen Res. 2014;9:688–92.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fernández-Hernández I, Rhiner C. New neurons for injured brains? The emergence of new genetic model organisms to study brain regeneration. Neurosci Biobehav Rev. 2015;56:62–72.

    Article  PubMed  Google Scholar 

  56. Zhang Y, Zhang ZG, Chopp M, Meng Y, Zhang L, Mahmood A, et al. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline. J Neurosurg. 2017;126:782–95.

    Article  PubMed  Google Scholar 

  57. Wu H, Li J, Xu D, Zhang Q, Cui T. Growth differentiation factor 5 improves neurogenesis and functional recovery in adult mouse hippocampus following traumatic brain injury. Front Neurol. 2018;9:592.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Carlson SW, Saatman KE. Central infusion of insulin-like growth factor-1 increases hippocampal neurogenesis and improves neurobehavioral function after traumatic brain injury. J Neurotrauma. 2018;35:1467–80.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal. 2020;18:62.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mukherjee N, Nandi S, Garg S, Ghosh S, Ghosh S, Samat R, et al. Targeting chondroitin sulfate proteoglycans: an emerging therapeutic strategy to treat CNS injury. ACS Chem Neurosci. 2020;11:231–2.

    Article  CAS  PubMed  Google Scholar 

  61. Wanner I, Anderson M, Song B, Levine J, Fernandez A, Gray-Thompson Z, et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. 2013;33:12870–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Chopp M, Meng Y, Zhang Z, Doppler E, Winter S, et al. Cerebrolysin improves cognitive performance in rats after mild traumatic brain injury. J Neurosurgery. 2015;122:843–55.

    Article  Google Scholar 

  63. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006;7:617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Y, Chopp M, Zhang ZG, Zhang Y, Zhang L, Lu M, et al. Cerebrolysin reduces astrogliosis and axonal injury and enhances neurogenesis in rats after closed head injury. Neurorehabil Neural Repair. 2019;33:15–26.

    Article  PubMed  Google Scholar 

  65. Xu W, Angelis K, Danielpour D, Haddad M, Bischof O, Campisi J, et al. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci USA. 2000;97:5924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reed J, Lin Q, Chen D, Mian I, Medrano E. SKI pathways inducing progression of human melanoma. Cancer Metastasis Rev. 2005;24:265–72.

    Article  CAS  PubMed  Google Scholar 

  67. Chen D, Xu W, Bales E, Colmenares C, Conacci-Sorrell M, Ishii S, et al. SKI activates Wnt/beta-catenin signaling in human melanoma. Cancer Res. 2003;63:6626–34.

    CAS  PubMed  Google Scholar 

  68. Lambert C, Cisternas P, Inestrosa NC. Role of Wnt signaling in central nervous system injury. Mol Neurobiol. 2016;53:2297–311.

    Article  CAS  PubMed  Google Scholar 

  69. He Y, Zhang H, Yung A, Villeda SA, Jaeger PA, Olayiwola O, et al. ALK5-dependent TGF-beta signaling is a major determinant of late-stage adult neurogenesis. Nature Neurosci. 2014;17:943–52.

    Article  CAS  PubMed  Google Scholar 

  70. Dias JM, Alekseenko Z, Applequist JM, Ericson J. Tgfbeta signaling regulates temporal neurogenesis and potency of neural stem cells in the CNS. Neuron. 2014;84:927–39.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang L, Yang X, Yang S, Zhang J. The Wnt /beta-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci. 2011;33:1–8.

    Article  PubMed  Google Scholar 

  72. Liu R, Wang W, Wang S, Xie W, Li H, Ning B. microRNA-21 regulates astrocytic reaction post-acute phase of spinal cord injury through modulating TGF-β signaling. Aging (Albany NY). 2018;10:1474–88.

    Article  CAS  PubMed  Google Scholar 

  73. Yu Z, Yu P, Chen H, Geller HM. Targeted inhibition of KCa3.1 attenuates TGF-β-induced reactive astrogliosis through the Smad2/3 signaling pathway. J Neurochem. 2014;130:41–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Y, Moges H, Bharucha Y, Symes A. Smad3 null mice display more rapid wound closure and reduced scar formation after a stab wound to the cerebral cortex. Exp Neurol. 2007;203:168–84.

    Article  CAS  PubMed  Google Scholar 

  75. Susarla BT, Laing ED, Yu P, Katagiri Y, Geller HM, Symes AJ. Smad proteins differentially regulate transforming growth factor-beta-mediated induction of chondroitin sulfate proteoglycans. J Neurochem. 2011;119:868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Minnich J, Mann S, Stock M, Stolzenbach K, Mortell B, Soderstrom K, et al. Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects cortical neurons from dying following a traumatic brain injury. Restor Neurol Neurosci. 2010;28:293–309.

    CAS  PubMed  Google Scholar 

  77. Hu J, Lang Y, Zhang T, Ni S, Lu H. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Neuroscience. 2016;328:40–9.

    Article  CAS  PubMed  Google Scholar 

  78. Ren D, Zheng P, Feng J, Gong Y, Wang Y, Duan J, et al. Overexpression of astrocytes-specific GJA1-20k enhances the viability and recovery of the neurons in a rat model of traumatic brain injury. ACS Chem Neurosci. 2020;11:1643–50.

    Article  CAS  PubMed  Google Scholar 

  79. Xia C, Yin H, Yao Y, Borlongan C, Chao L, Chao J. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 2006;17:206–19.

    Article  CAS  PubMed  Google Scholar 

  80. Yoo J, Seo J, Eom J, Hwang D. Effects of stromal cell-derived factor 1α delivered at different phases of transient focal ischemia in rats. Neuroscience. 2012;209:171–86.

    Article  CAS  PubMed  Google Scholar 

  81. Sugiura S, Kitagawa K, Tanaka S, Todo K, Omura-Matsuoka E, Sasaki T, et al. Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke. 2005;36:859–64.

    Article  CAS  PubMed  Google Scholar 

  82. Yu Z, Chen L, Tang L, Hu C. Effects of recombinant adenovirus-mediated hypoxia-inducible factor-1alpha gene on proliferation and differentiation of endogenous neural stem cells in rats following intracerebral hemorrhage. Asian Pac J Trop Med. 2013;6:762–7.

    Article  CAS  PubMed  Google Scholar 

  83. Zhu W, Fan Y, Frenzel T, Gasmi M, Bartus R, Young W, et al. Insulin growth factor-1 gene transfer enhances neurovascular remodeling and improves long-term stroke outcome in mice. Stroke. 2008;39:1254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shruster A, Ben-Zur T, Melamed E, Offen D. Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. PLoS One. 2012;7:e40843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zeng L, He X, Liu J, Zheng C, Wang Y, Yang G. Lentivirus-mediated overexpression of microRNA-210 improves long-term outcomes after focal cerebral ischemia in mice. CNS Neurosci Ther. 2016;22:961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao Y, Wang L, Peng A, Liu X, Wang Y, Huang S, et al. The neuroprotective and neurorestorative effects of growth differentiation factor 11 in cerebral ischemic injury. Brain Res. 2020;1737:146802.

    Article  CAS  PubMed  Google Scholar 

  87. Guo Y, Liu S, Zhang X, Wang L, Zhang X, Hao A, et al. Sox11 promotes endogenous neurogenesis and locomotor recovery in mice spinal cord injury. Biochem Biophys Res Commun. 2014;446:830–5.

    Article  CAS  PubMed  Google Scholar 

  88. Chen Y, Ma N, Pei Z, Wu Z, Do-Monte F, Keefe S, et al. A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol Ther. 2020;28:217–34.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang L, Lei Z, Guo Z, Pei Z, Chen Y, Zhang F, et al. Development of neuroregenerative gene therapy to reverse glial scar tissue back to neuron-enriched tissue. Front Cell Neurosci. 2020;14:594170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Puls B, Ding Y, Zhang F, Pan M, Lei Z, Pei Z, et al. Regeneration of functional neurons after spinal cord injury via in situ NeuroD1-mediated astrocyte-to-neuron conversion. Front Cell Dev Biol. 2020;8:591883.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Negro-Demontel M, Saccardo P, Giacomini C, Yáñez-Muñoz R, Ferrer-Miralles N, Vazquez E, et al. Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy. Mol Ther Methods Clin Dev. 2014;1:14047.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Blanco-Ocampo D, Cawen F, Álamo-Pindado L, Negro-Demontel M, Peluffo H. Safe and neuroprotective vectors for long-term traumatic brain injury gene therapy. Gene Ther. 2020;27:96–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jin Bo and Dr Tong Hai-Peng from the Department of Radiology, Research Institute of Surgery and Daping Hospital for their technical assistance in MRI analysis. We thank the Department of Pathology, Research Institute of Surgery and Daping Hospital for their assistance in collecting and processing pathological specimens.

Funding

The research fund of the State Key Laboratory of Trauma, Burn and Combined Injury of China (No. SKLZZ20111) supported the purchase of reagents and experimental animals, the collection, analysis, and interpretation of data, and the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YZhai and S-YY: carried out experiments, performed statistical analysis, and drafted the manuscript. YZhao, Y-LN, PL, and Y-GZ: designed and oversaw the experiments, interpreted the data, and reviewed the manuscript. HD, Z-ZH: carried out a significant proportion of the supplementary experiments. Q-SW: performed the preparation of paraffin sections, and analyses of neuropathological characterization. R-PX: performed the western blot experiments and corresponding statistical analysis. Y-WX: assisted in the neurobehavioral examination. S-YF, YP, and NY: assisted in making animal models, and the injection of Adv. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ping Li or Yuan-Guo Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Y., Ye, SY., Wang, QS. et al. Overexpressed ski efficiently promotes neurorestoration, increases neuronal regeneration, and reduces astrogliosis after traumatic brain injury. Gene Ther 30, 75–87 (2023). https://doi.org/10.1038/s41434-022-00320-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00320-x

This article is cited by

Search

Quick links