Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chitosan-coated Zn-metal-organic framework nanocomposites for effective targeted delivery of LNA-antisense miR-224 to colon tumor: in vitro studies

Abstract

Nowadays, nano-compartments are considered as an effective drug delivery system (DDS) for cancer therapy. Targeted delivery of therapeutic agents is an advantageous approach by which cancer cells can be targeted without harming normal cells, and eliminates the negative effects of conventional therapies such as chemotherapy. In this research, a novel zinc-based nanoscale metal-organic framework (Zn-NMOF) coated with folic acid (FA) functionalized chitosan (CS) has been constructed and applied as efficient delivery of LNA (locked nucleic acid)-antisense miR-224 to colon cancer cell lines. LNA-antisense miR-224 as a therapeutic sequence was able to considerably block highly expressed miR-224 and downregulated cancer cell growth. The prepared nano-complex was characterized by analytical devices such as FT-IR, UV-Vis spectrophotometry, DLS, TEM, and XRD. The size range of NMOF-CS-FA-LNA-antisense miR-224 (MCFL224) nano-complex was obtained nearly at 200 nm. The entrapment efficiency of LNA-antisense miR-224 was calculated 72 ± 5% and a significant release profile of LNA-antisense miR-224 was observed at first 6 h (about 50%). Then, in vitro assays were implemented on HCT116 (folic acid receptor-positive colon cancer cell line) and CRL1831 (normal colon cell line) to evaluate the therapeutic efficiency of the MCFL224 nano-complex. In these investigations, decreased cell viability (14.22 ± 0.3% after 72 h treatment), increased apoptotic and autophagy-related genes expression level (BECLIN1: 34-folds, BAX: 36-folds, mTORC1: 10-folds, and Caspase-9: 9-folds more than control), higher cell cycle arrest in sub-G1 phase (19.53% of cells in sub-G1 phase), and more apoptosis analyses (late apoptosis: 67.7%) were evaluated in colon cancer cells treated with MCFL224 nano-complex. Results remarkably indicate the inhibited growth of colon cancer cells and induced cell apoptosis which suggests MCFL224 as a promising nanocomposite for colon cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical Characterization of nanoparicles by FT-IR and XRD.
Fig. 2: Transmission electron microscopy analysis of nanoparticles.
Fig. 3: Qualification assessment of LNA entrapment and LNA release from nanocomposites.
Fig. 4: Cell viability assessment of nanocomposites by MTT assay.
Fig. 5: The expression level of BAX and Caspase-9 (as apoptosis genes) and BECLIN1 and mTORC1 (as autophagy genes) after 5 h of treatment with MCFL224 nano-complex (125 nM) in HCT116 cell line.
Fig. 6: Cell cycle analysis of cells impressed with nanocomposites.
Fig. 7: Flow cytometry-based apoptosis detection.

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  Google Scholar 

  2. Narmani A, Kamali M, Panahi Y, Amini B, Salimi A. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: in vitro studies. Process Biochem. 2018;69:178–87.

    Article  CAS  Google Scholar 

  3. Ding S, Khan AI, Cai X, Song Z, Lyu Z, Du D, et al. Overcoming blood-brain barrier transport: advances in nanoparticle-based drug delivery strategies. Mater Today. https://doi.org/10.1016/j.mattod.2020.02.001.

  4. Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M, et al. Gadolinium nanoparticles as diagnostic and therapeutic agents: their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol. 2018;44:457–66.

    Article  CAS  Google Scholar 

  5. Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: an up-to-date review. J Control Release. 2020;319:135–56.

    Article  CAS  Google Scholar 

  6. Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv. Colloid Interface Sci. 2020;278:102125.

    Article  CAS  Google Scholar 

  7. Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, et al. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr Polym. 2020;238:116126.

    Article  CAS  Google Scholar 

  8. Narmani A, Kamali M, Amini B, Kooshki H, Amini A, Hassani L. Highly sensitive and accurate detection of Vibrio cholera O1 OmpW gene by fluorescence DNA biosensor based on gold and magnetic nanoparticles. Process Biochem. 2018;65:46–54.

    Article  CAS  Google Scholar 

  9. Wang XG, Dong ZY, Cheng H, Wan SS, Chen WH, Zou MZ, et al. A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale. 2015;7:16061–70.

    Article  CAS  Google Scholar 

  10. Zhuang J, Kuo CH, Chou LY, Liu DY, Weerapana E, Tsung CK. Optimized metal_organic- framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8:2812–9.

    Article  CAS  Google Scholar 

  11. Liang K, Wang R, Boutter M, Doherty CM, Mulet X, Richardson JJ. Biomimetic mineralization of metal–organic frameworks around polysaccharides. Chem Commun. 2017;19:1249–52.

    Article  Google Scholar 

  12. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nystrom AM, et al. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc. 2016;138:962–8.

    Article  CAS  Google Scholar 

  13. Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, et al. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res. 2019;80:404–24.

    Article  CAS  Google Scholar 

  14. Narmani A, Mohammadnejad J, Yavari K. Synthesis and evaluation of polyethylene glycol- and folic acid-conjugated polyamidoamine G4 dendrimer as nanocarrier. J Drug Deliv Sci Technol. 2019;50:278–86.

    Article  CAS  Google Scholar 

  15. Narmani A, Arani MAA, Mohammadnejad J, Vaziri AZ, Solymani S, Yavari K, et al. Breast tumor targeting with PAMAM-PEG-5FU-99mTc as a new therapeutic nanocomplex: in in-vitro and in-vivo studies. Biomed Microdevices. 2020;22:31.

    Article  CAS  Google Scholar 

  16. Chen Y, Wu D, Zhong W, Kuang S, Luo Q, Song L, et al. Evaluation of the PEG fensity in the PEGylated chitosan nanoparticles as a drug carrier for curcumin and mitoxantrone. Nanomaterials. 2018;8:486.

    Article  Google Scholar 

  17. Rezvani M, Mohammadnejad J, Narmani A, Bidaki K. Synthesis and in vitro study of modified chitosan polycaprolactamnanocomplex as delivery system. Int J Biol Macromol. 2018;113:1287–93.

    Article  CAS  Google Scholar 

  18. Mombini S, Mohammadnejad J, Bakhshandeh B, Narmani A, Nourmohammadi J, Vahdat S, et al. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol. 2019;140:278–87.

    Article  CAS  Google Scholar 

  19. Duan J, Liang X, Cao Y, Wang S, Zhang L. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. Macromolecules. 2015;48:2706–14.

    Article  CAS  Google Scholar 

  20. Jiang YW, Chen LA. microRNAs as tumor inhibitors, oncogenes, biomarkers for drug efficacy and outcome predictors in lung cancer (review). Mol Med Rep. 2012;5:890–4.

    Article  CAS  Google Scholar 

  21. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24:4677–84.

    Article  CAS  Google Scholar 

  22. Liao W-T, Li T-T, Wang Z-G, Wang S-Y, He M-R, Ye Y-P, et al. microRNA-224 promotes cell proliferation and tumor growth in human colorectal cancer by repressing PHLPP1 and PHLPP2. Clin Cancer Res. 2013;19:4662.

    Article  CAS  Google Scholar 

  23. Huang L, Dai T, Lin X, Zhao X, Chen X, Wang C, et al. MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells. Biochem Biophys Res Commun. 2012;425:127–33.

    Article  CAS  Google Scholar 

  24. Hidalgo T, Giménez-Marqués M, Bellido E, Avila J, Asensio MC, Salles F, et al. Chitosan-coated mesoporous MIL-100 (Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci Rep. 2017;7:43099.

    Article  CAS  Google Scholar 

  25. Daryasari MP, Akhgar MR, Mamashli F, Bigdeli B, Khoobi M. Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. RSC Adv. 2016;107:105578–88.

    Article  Google Scholar 

  26. Narmani A, Yavari K, Mohammadnejad J. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex. Colloids Surf B. 2017;159:232–40.

    Article  CAS  Google Scholar 

  27. SPECIFICATIONS Q, DOCUMENTATION P. Lipofectamine™ 2000 Transfection Reagent.

  28. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Alitheen NB, Hussein MZ, et al. In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system. J Colloid Interface Sci. 2016;480:146–58.

    Article  CAS  Google Scholar 

  29. Ghaffar I, Imran M, Perveen S, Kanwal T, Saifullah S, Bertino MF. Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Mater Sci Eng C. 2019;105:110111.

    Article  CAS  Google Scholar 

  30. Liu L, Ping E, Sun J, Zhang L, Zhou Y, Zhong Y, et al. Multifunctional Ag@ MOF-5@chitosan non-woven cloth composites for sulfur mustard decontamination and hemostasis. Dalton Trans. 2019;48:6951–9.

    Article  CAS  Google Scholar 

  31. Yang L, Ruess GL, Carreon MA. Cu, Al and Ga based metal organic framework catalysts for the decarboxylation of oleic acid. Catal Sci Technol. 2015;5:2777–82.

    Article  CAS  Google Scholar 

  32. Ali MEA, Aboelfadl MMS, Selim AM, Khalil HF, Elkady GM. Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Sep Sci Technol. 2018;53:2870–81.

    Article  CAS  Google Scholar 

  33. Chalati T, Horcajada P, Gref R, Couvreur P, Serre C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J Mater Chem. 2011;21:2220–7.

    Article  CAS  Google Scholar 

  34. Abazari R, Mahjoub AR, Ataei F, Morsali A, Carpenter-Warren CL, Mehdizadeh K, et al. Chitosan immobilization on bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorg Chem. 2018;57:13364–79.

    Article  CAS  Google Scholar 

  35. Hajiashrafi S, Kazemi NM. Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon. 2019;5:e02152.

    Article  Google Scholar 

  36. Cosco D, Cilurzo F, Maiuolo J, Federico C, Martino MTD, Cristiano MC. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci Rep. 2015;5:17579.

    Article  CAS  Google Scholar 

  37. Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials. 2014;35:4333–44.

    Article  CAS  Google Scholar 

  38. Tekie FSM, Atyabi F, Soleimani M, Arefian E, Atashi A, Kiani M, et al. Chitosan polyplex nanoparticle vector for miR-145 expression in MCF-7: optimization by the design of experiment. Int J Biol Macromol. 2015;81:828–37.

    Article  CAS  Google Scholar 

  39. Ju E, Li T, Liu Z, da Silva SR, Wei S, Zhang X, et al. Specific inhibition of viral microRNAs by carbon dots-mediated delivery of locked nucleic acids for therapy of virus-induced cancer. ACS Nano. 2020;14:476–87.

    Article  CAS  Google Scholar 

  40. Lin Q, Mao Y, Song Y, Huang D. MicroRNA-34a induces apoptosis in PC12 cells by reducing B-cell lymphoma 2 and sirtuin-1 expression. Mol Med Rep. 2015;12:5709–14.

    Article  CAS  Google Scholar 

  41. Wu J, Wu G, Lv L, Ren YF, Zhang XJ, Xue YF, et al. MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1. Carcinogenesis. 2012;33:519–28.

    Article  CAS  Google Scholar 

  42. Zou M, Lu N, Hu C, Liu W, Sun Y, Wang X, et al. Beclin 1-mediated autophagy in hepatocellular carcinoma cells: Implication in anticancer efficiency of oroxylin A via inhibition of mTOR signaling. Cell Signal. 2012;24:1722–32.

    Article  CAS  Google Scholar 

  43. Towers CG, Wodetzki D, Thorburn A. Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. Journal of Cell Biology. 2020;219:e201907022.

  44. Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 2020;27:843–57.

    Article  Google Scholar 

  45. Murad H, Hawat M, Ekhtiar A, AlJapawe A, Abbas A, Darwish H, et al. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa. Cancer Cell Int. 2016;16:1–1.

    Article  Google Scholar 

  46. Karsy M, Arslan E, Moy F. Current progress on understanding microRNAs in glioblastoma multiforme. Genes Cancer. 2012;3:3–15.

    Article  Google Scholar 

  47. Tu L, Wang M, Zhao W-Y, Zhang Z-Z, Tang D-F, Zhang Y-Q. miRNA-218-loaded carboxymethyl chitosan-tocopherol nanoparticle to suppress the proliferation of gastrointestinal stromal tumor growth. Mater Sci Eng C. 2017;72:177–84.

    Article  CAS  Google Scholar 

  48. Wang L, Zhou B–B, Yu K, Su Z–H, Gao S, Chu L–L, et al. Novel antitumor agent, Trilacunary Keggin–type tungstobismuthate, inhibits proliferation and induces apoptosis in human gastric cancer SGC–7901 cells. Inorg. Chem. 2013;52:5119–27.

    Article  CAS  Google Scholar 

  49. Howe EN, Cochrane DR, Richer JK. Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res. 2011;13:R45.

    Article  CAS  Google Scholar 

  50. Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017;25:1069–75.

    Article  CAS  Google Scholar 

  51. Krishna M. From petunias to the present—a review of oligonucleotide therapy. J Clin Epigenet. 2017;3:38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Khaleghi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokri, N., Sepehri, Z., Faninam, F. et al. Chitosan-coated Zn-metal-organic framework nanocomposites for effective targeted delivery of LNA-antisense miR-224 to colon tumor: in vitro studies. Gene Ther 29, 680–690 (2022). https://doi.org/10.1038/s41434-021-00265-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00265-7

Search

Quick links