Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions

A Correction to this article was published on 26 March 2021

This article has been updated

Abstract

In the last two decades, recombinant adeno-associated virus has emerged as the most popular gene therapy vector. Recently AAV gene therapy has been approved by the FDA for the treatment of two rare genetic disorders, namely the early childhood blindness disease Leber congenital amaurosis and spinal muscular atrophy (SMA). As is the case for the treatment of SMA, if the AAV vector must be administered systemically, very high vector doses are often required for therapeutic efficacy. But higher vector doses inevitably increase the risk of adverse events. The tragic death of three children in a clinical trial to treat X-linked myotubular myopathy with an AAV vector has thrown this limitation into sharp relief. Regardless of the precise cause(s) that led to the death of the two children, it is critical that we develop better AAV vectors to achieve therapeutic levels of expression with lower vector doses. To transduce successfully a target cell, AAV has to overcome both systemic as well as cellular roadblocks. In this review, we discuss some of the most prominent cellular roadblocks that AAV must get past to deliver successfully its therapeutic payload. We also highlight recent advancements in our knowledge of AAV biology that can potentially be harnessed to improve AAV vector performance and thereby make AAV gene therapy safer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Wild-type AAV genome organization.
Fig. 2: AAV can follow multiple endocytic routes into the cell.
Fig. 3: Intracellular trafficking of AAV to the Golgi.
Fig. 4: AAV must escape into the cytosol prior to nuclear entry.
Fig. 5: Steps following nuclear import that lead to transgene expression.

Change history

References

  1. 1.

    Kumaran N, Michaelides M, Smith AJ, Ali RR, Bainbridge JWB. Retinal gene therapy. Br Med Bull. 2018;126:13–25.

    CAS  PubMed  Google Scholar 

  2. 2.

    Hoy SM. Onasemnogene abeparvovec: first global approval. Drugs. 2019;79:1255–62.

    CAS  PubMed  Google Scholar 

  3. 3.

    Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin. 2015;33:831–46.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149:754–6.

    CAS  PubMed  Google Scholar 

  5. 5.

    Weitzman MD, Linden RM. Adeno-associated virus biology. In: Snyder RO, Moullier P (eds). Adeno-associated virus: methods and protocols. Humana Press: Totowa, NJ, 2011, pp 1-23.

  6. 6.

    Kotin RM, Linden RM, Berns KI. Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. 1992;11:5071–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Linden RM, Ward P, Giraud C, Winocour E, Berns KI. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA. 1996;93:11288–94.

    CAS  PubMed  Google Scholar 

  8. 8.

    Linden RM, Winocour E, Berns KI. The recombination signals for adeno-associated virus site-specific integration. Proc Natl Acad Sci USA. 1996;93:7966–72.

    CAS  PubMed  Google Scholar 

  9. 9.

    McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet. 2004;38:819–45.

    CAS  PubMed  Google Scholar 

  10. 10.

    Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci USA. 2010;107:10220–5.

    CAS  PubMed  Google Scholar 

  11. 11.

    Earley LF, Powers JM, Adachi K, Baumgart JT, Meyer NL, Xie Q et al. Adeno-associated virus (AAV) assembly-activating protein is not an essential requirement for capsid assembly of AAV serotypes 4, 5, and 11. J Virol. 2017;91:e02213–17. https://doi.org/10.1128/jvi.02213-17.

    CAS  Article  Google Scholar 

  12. 12.

    Sonntag F, Kother K, Schmidt K, Weghofer M, Raupp C, Nieto K, et al. The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes. J Virol. 2011;85:12686–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Dong JY, Fan PD, Frizzell RA. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther. 1996;7:2101–12.

    CAS  PubMed  Google Scholar 

  14. 14.

    Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA. 1984;81:6466–70.

    CAS  PubMed  Google Scholar 

  15. 15.

    Vandamme C, Adjali O, Mingozzi F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum Gene Ther. 2017;28:1061–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wilson JM, Flotte TR. Moving forward after two deaths in a gene therapy trial of myotubular myopathy. Hum Gene Ther. 2020;31:695–6.

    CAS  PubMed  Google Scholar 

  17. 17.

    Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22.

    CAS  PubMed  Google Scholar 

  18. 18.

    Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365:2357–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 2007;13:419–22.

    CAS  PubMed  Google Scholar 

  20. 20.

    Samulski RJ, Berns KI, Tan M, Muzyczka N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA. 1982;79:2077–81.

    CAS  PubMed  Google Scholar 

  21. 21.

    Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 2016;21:75–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16:1073–80.

    CAS  PubMed  Google Scholar 

  23. 23.

    Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE. Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci. 2010;3:81–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ellis BL, Hirsch ML, Barker JC, Connelly JP, Steininger RJ 3rd, Porteus MH. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J. 2013;10:74.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Grimm D, Kern A, Pawlita M, Ferrari F, Samulski R, Kleinschmidt J. Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Ther. 1999;6:1322–30.

    CAS  PubMed  Google Scholar 

  26. 26.

    Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol. 2008;82:5887–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zeltner N, Kohlbrenner E, Clement N, Weber T, Linden RM. Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors. Gene Ther. 2010;17:872–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kronenberg S, Bottcher B, von der Lieth CW, Bleker S, Kleinschmidt JA. A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. J Virol. 2005;79:5296–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sonntag F, Bleker S, Leuchs B, Fischer R, Kleinschmidt JA. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J Virol. 2006;80:11040–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Nicolson SC, Samulski RJ. Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol. 2014;88:4132–44.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet. 2003;34:297–302.

    CAS  PubMed  Google Scholar 

  32. 32.

    Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2020;39:47–55.

    Google Scholar 

  33. 33.

    Nowrouzi A, Penaud-Budloo M, Kaeppel C, Appelt U, Le Guiner C, Moullier P, et al. Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol Ther. 2012;20:1177–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Nault JC, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015;47:1187–93.

    CAS  PubMed  Google Scholar 

  35. 35.

    Buning H, Schmidt M. Adeno-associated vector toxicity-to be or not to be? Mol Ther. 2015;23:1673–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Berns KI, Byrne BJ, Flotte TR, Gao G, Hauswirth WW, Herzog RW, et al. Adeno-Associated Virus Type 2 and Hepatocellular Carcinoma? Hum Gene Ther. 2015;26:779–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods. 2013;24:59–67.

    CAS  PubMed  Google Scholar 

  38. 38.

    Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72:1438–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kalia M, Jameel S. Virus entry paradigms. Amino Acids. 2011;41:1147–57.

    CAS  PubMed  Google Scholar 

  40. 40.

    Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med. 1999;5:71–7.

    CAS  PubMed  Google Scholar 

  41. 41.

    Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med. 1999;5:78–82.

    CAS  PubMed  Google Scholar 

  42. 42.

    Sanlioglu S, Benson PK, Yang J, Atkinson EM, Reynolds T, Engelhardt JF. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol. 2000;74:9184–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol. 2006;80:8961–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K, et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol. 2005;79:609–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol. 2006;80:9831–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Levy HC, Bowman VD, Govindasamy L, McKenna R, Nash K, Warrington K, et al. Heparin binding induces conformational changes in Adeno-associated virus serotype 2. J Struct Biol. 2009;165:146–56.

    CAS  PubMed  Google Scholar 

  47. 47.

    O’Donnell J, Taylor KA, Chapman MS. Adeno-associated virus-2 and its primary cellular receptor-Cryo-EM structure of a heparin complex. Virology. 2009;385:434–43.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Wallen AJ, Barker GA, Fein DE, Jing H, Diamond SL. Enhancers of adeno-associated virus AAV2 transduction via high throughput siRNA screening. Mol Ther. 2011;19:1152–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Qiu J, Brown KE. Integrin alphaVbeta5 is not involved in adeno-associated virus type 2 (AAV2) infection. Virology. 1999;264:436–40.

    CAS  PubMed  Google Scholar 

  50. 50.

    Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, et al. An essential receptor for adeno-associated virus infection. Nature. 2016;530:108–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Chen CL, Jensen RL, Schnepp BC, Connell MJ, Shell R, Sferra TJ, et al. Molecular characterization of adeno-associated viruses infecting children. J Virol. 2005;79:14781–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Cabanes-Creus M, Hallwirth CV, Westhaus A, Ng BH, Liao SHY, Zhu E et al. Restoring the natural tropism of AAV2 vectors for human liver. Sci Transl Med. 2020;12:eaba3312.

    CAS  PubMed  Google Scholar 

  53. 53.

    Kern A, Schmidt K, Leder C, Muller OJ, Wobus CE, Bettinger K, et al. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol. 2003;77:11072–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Afione S, DiMattia MA, Halder S, Di Pasquale G, Agbandje-McKenna M, Chiorini JA. Identification and mutagenesis of the adeno-associated virus 5 sialic acid binding region. J Virol. 2015;89:1660–72.

    PubMed  Google Scholar 

  55. 55.

    Dudek AM, Pillay S, Puschnik AS, Nagamine CM, Cheng F, Qiu J, et al. An alternate route for adeno-associated virus (AAV) entry independent of AAV receptor. J Virol. 2018;92:e02213–17.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mizukami H, Young NS, Brown KE. Adeno-associated virus type 2 binds to a 150-kilodalton cell membrane glycoprotein. Virology. 1996;217:124–30.

    CAS  PubMed  Google Scholar 

  57. 57.

    Zengel J, Carette JE. Structural and cellular biology of adeno-associated virus attachment and entry. Adv Virus Res. 2020;106:39–84.

    PubMed  Google Scholar 

  58. 58.

    Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe. 2011;10:563–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Duan D, Li Q, Kao AW, Yue Y, Pessin JE, Engelhardt JF. Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol. 1999;73:10371–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Bartlett JS, Wilcher R, Samulski RJ. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol. 2000;74:2777–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Bess CD. Analysis of cellular factors involved in adeno- associated virus type 2 entry. Rockefeller University, 2009.

  62. 62.

    Sanlioglu AD, Karacay B, Benson PK, Engelhardt JF, Sanlioglu S. Novel approaches to augment adeno-associated virus type-2 endocytosis and transduction. Virus Res. 2004;104:51–9.

    CAS  PubMed  Google Scholar 

  63. 63.

    Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature. 1996;382:177–9.

    CAS  PubMed  Google Scholar 

  64. 64.

    Malecz N, McCabe PC, Spaargaren C, Qiu R, Chuang Y, Symons M. Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr Biol. 2000;10:1383–6.

    CAS  PubMed  Google Scholar 

  65. 65.

    Chung SH, Frese KK, Weiss RS, Prasad BV, Javier RT. A new crucial protein interaction element that targets the adenovirus E4-ORF1 oncoprotein to membrane vesicles. J Virol. 2007;81:4787–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Sabharanjak S, Sharma P, Parton RG, Mayor S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell. 2002;2:411–23.

    CAS  PubMed  Google Scholar 

  67. 67.

    Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 2007;8:603–12.

    CAS  PubMed  Google Scholar 

  68. 68.

    Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y, Parton RG, et al. The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol. 2008;18:1802–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Iwasaki M, Ngo N, de la Torre JC. Sodium hydrogen exchangers contribute to arenavirus cell entry. J Virol. 2014;88:643–54.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Wittrup A, Zhang SH, Svensson KJ, Kucharzewska P, Johansson MC, Morgelin M, et al. Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery. Proc Natl Acad Sci USA. 2010;107:13342–7.

    CAS  PubMed  Google Scholar 

  71. 71.

    Bantel-Schaal U, Hub B, Kartenbeck J. Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J Virol. 2002;76:2340–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Johnson JS, Gentzsch M, Zhang L, Ribeiro CM, Kantor B, Kafri T, et al. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis. PLoS Pathog. 2011;7:e1002053.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Meisen WH, Nejad ZB, Hardy M, Zhao H, Oliverio O, Wang S, et al. Pooled screens identify GPR108 and TM9SF2 as host cell factors critical for AAV transduction. Mol Ther Methods Clin Dev. 2020;17:601–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Nonnenmacher ME, Cintrat JC, Gillet D, Weber T. Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction. J Virol. 2015;89:1673–87.

    PubMed  Google Scholar 

  75. 75.

    Pajusola K, Gruchala M, Joch H, Luscher TF, Yla-Herttuala S, Bueler H. Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol. 2002;76:11530–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Douar AM, Poulard K, Stockholm D, Danos O. Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol. 2001;75:1824–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Hansen J, Qing K, Kwon HJ, Mah C, Srivastava A. Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol. 2000;74:992–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ding W, Zhang LN, Yeaman C, Engelhardt JF. rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion. Mol Ther. 2006;13:671–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Forrester A, Rathjen SJ, Daniela Garcia-Castillo M, Bachert C, Couhert A, Tepshi L, et al. Functional dissection of the retrograde Shiga toxin trafficking inhibitor Retro-2. Nat Chem Biol. 2020;16:327–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525.

    CAS  PubMed  Google Scholar 

  81. 81.

    Lombardi D, Soldati T, Riederer MA, Goda Y, Zerial M, Pfeffer SR. Rab9 functions in transport between late endosomes and the trans Golgi network. The EMBO journal. 1993;12:677–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, Bonifacino JS. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science. 2001;292:1712–6.

    CAS  PubMed  Google Scholar 

  83. 83.

    Dudek AM, Zabaleta N, Zinn E, Pillay S, Zengel J, Porter C, et al. GPR108 is a highly conserved AAV entry factor. Mol Ther. 2020;28:367–81.

    CAS  PubMed  Google Scholar 

  84. 84.

    Dong D, Zhou H, Na SY, Niedra R, Peng Y, Wang H, et al. GPR108, an NF-kappaB activator suppressed by TIRAP, negatively regulates TLR-triggered immune responses. PLoS One. 2018;13:e0205303.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Tanaka A, Tumkosit U, Nakamura S, Motooka D, Kishishita N, Priengprom T, et al. Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for Chikungunya virus infection. J Virol. 2017;91:e00432–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol. 2001;75:6884–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Tian S, Muneeruddin K, Choi MY, Tao L, Bhuiyan RH, Ohmi Y, et al. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol. 2018;16:e2006951.

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Akache B, Grimm D, Shen X, Fuess S, Yant SR, Glazer DS, et al. A two-hybrid screen identifies cathepsins B and L as uncoating factors for adeno-associated virus 2 and 8. Mol Ther. 2007;15:330–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Salganik M, Venkatakrishnan B, Bennett A, Lins B, Yarbrough J, Muzyczka N, et al. Evidence for pH-dependent protease activity in the adeno-associated virus capsid. J Virol. 2012;86:11877–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Zadori Z, Szelei J, Lacoste MC, Li Y, Gariepy S, Raymond P, et al. A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell. 2001;1:291–302.

    CAS  PubMed  Google Scholar 

  91. 91.

    Girod A, Wobus CE, Zadori Z, Ried M, Leike K, Tijssen P, et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol. 2002;83(Pt 5):973–8.

    CAS  PubMed  Google Scholar 

  92. 92.

    Stahnke S, Lux K, Uhrig S, Kreppel F, Hosel M, Coutelle O, et al. Intrinsic phospholipase A2 activity of adeno-associated virus is involved in endosomal escape of incoming particles. Virology. 2011;409:77–83.

    CAS  PubMed  Google Scholar 

  93. 93.

    Xiao W, Warrington KH Jr, Hearing P, Hughes J, Muzyczka N. Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2. J Virol. 2002;76:11505–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science. 2001;294:1929–32.

    CAS  PubMed  Google Scholar 

  95. 95.

    Thomas CE, Storm TA, Huang Z, Kay MA. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol. 2004;78:3110–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Johnson JS, Samulski RJ. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol. 2009;83:2632–44.

    CAS  PubMed  Google Scholar 

  97. 97.

    Lux K, Goerlitz N, Schlemminger S, Perabo L, Goldnau D, Endell J, et al. Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J Virol. 2005;79:11776–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kelich JM, Ma J, Dong B, Wang Q, Chin M, Magura CM, et al. Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Mol Ther Methods Clin Dev. 2015;2:15047.

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Grieger JC, Snowdy S, Samulski RJ. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J Virol. 2006;80:5199–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Bevington JM, Needham PG, Verrill KC, Collaco RF, Basrur V, Trempe JP. Adeno-associated virus interactions with B23/Nucleophosmin: identification of sub-nucleolar virion regions. Virology. 2007;357:102–13.

    CAS  PubMed  Google Scholar 

  101. 101.

    Qiu J, Brown KE. A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid. Virology. 1999;257:373–82.

    CAS  PubMed  Google Scholar 

  102. 102.

    Bernaud J, Rossi A, Fis A, Gardette L, Aillot L, Buning H, et al. Characterization of AAV vector particle stability at the single-capsid level. J Biol Phys. 2018;44:181–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Cotmore SF, Tattersall P. Mutations at the base of the icosahedral five-fold cylinders of minute virus of mice induce 3’-to-5’ genome uncoating and critically impair entry functions. J Virol. 2012;86:69–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Ros C, Baltzer C, Mani B, Kempf C. Parvovirus uncoating in vitro reveals a mechanism of DNA release without capsid disassembly and striking differences in encapsidated DNA stability. Virology. 2006;345:137–47.

    CAS  PubMed  Google Scholar 

  105. 105.

    Rossi A, Dupaty L, Aillot L, Zhang L, Gallien C, Hallek M, et al. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep. 2019;9:3631.

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Hsu HL, Brown A, Loveland AB, Lotun A, Xu M, Luo L, et al. Structural characterization of a novel human adeno-associated virus capsid with neurotropic properties. Nat Commun. 2020;11:3279.

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol. 1996;70:3227–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol. 1996;70:520–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Qing K, Wang XS, Kube DM, Ponnazhagan S, Bajpai A, Srivastava A. Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression. Proc Natl Acad Sci USA. 1997;94:10879–84.

    CAS  PubMed  Google Scholar 

  110. 110.

    Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman MD. The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J Virol. 2007;81:12936–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Mano M, Ippodrino R, Zentilin L, Zacchigna S, Giacca M. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction. Proc Natl Acad Sci USA. 2015;112:11276–81.

    CAS  PubMed  Google Scholar 

  112. 112.

    Schreiber CA, Sakuma T, Izumiya Y, Holditch SJ, Hickey RD, Bressin RK, et al. An siRNA screen identifies the U2 snRNP spliceosome as a host restriction factor for recombinant adeno-associated viruses. PLoS Pathog. 2015;11:e1005082.

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Mitchell AM, Samulski RJ. Mechanistic insights into the enhancement of adeno-associated virus transduction by proteasome inhibitors. J Virol. 2013;87:13035–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF. Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol. 2002;76:2043–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Chaanine AH, Nonnenmacher M, Kohlbrenner E, Jin D, Kovacic JC, Akar FG, et al. Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment to preserve cardiac function in a rat pressure-overload model of heart failure. Gene Ther. 2014;21:379–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Li B, Ma W, Ling C, Van Vliet K, Huang LY, Agbandje-McKenna M, et al. Site-directed mutagenesis of surface-exposed lysine residues leads to improved transduction by AAV2, but not AAV8, vectors in murine hepatocytes in vivo. Hum Gene Ther Methods. 2015;26:211–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Bogyo M, Wang EW. Proteasome inhibitors: complex tools for a complex enzyme. Curr Top Microbiol Immunol. 2002;268:185–208.

    CAS  PubMed  Google Scholar 

  118. 118.

    Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107:4907–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Chen Q, Njenga R, Leuchs B, Chiocca S, Kleinschmidt J, Muller M. Sumoylation targets adeno-associated virus capsids but mainly restricts transduction by cellular mechanisms. J Virol. 2020; 94. e00871–20.

  120. 120.

    Holscher C, Sonntag F, Henrich K, Chen Q, Beneke J, Matula P, et al. The sumoylation pathway restricts gene transduction by adeno-associated viruses. PLoS Pathog. 2015;11:e1005281.

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Schreiner S, Wodrich H. Virion factors that target Daxx to overcome intrinsic immunity. J Virol. 2013;87:10412–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Zhong L, Zhao W, Wu J, Li B, Zolotukhin S, Govindasamy L, et al. A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis. Mol Ther. 2007;15:1323–30.

    CAS  PubMed  Google Scholar 

  123. 123.

    Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA. 2008;105:7827–32.

    CAS  PubMed  Google Scholar 

  124. 124.

    Zhong L, Qing K, Si Y, Chen L, Tan M, Srivastava A. Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. J Biol Chem. 2004;279:12714–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology. 2008;381:194–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Aslanidi GV, Rivers AE, Ortiz L, Song L, Ling C, Govindasamy L, et al. Optimization of the capsid of recombinant adeno-associated virus 2 (AAV2) vectors: the final threshold? PLoS One. 2013;8:e59142.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Buning H, Srivastava A. Capsid modifications for targeting and improving the efficacy of AAV vectors. Mol Ther Methods Clin Dev. 2019;12:248–65.

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 2014;6:a022616.

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Gray JL, Delft F, Brennan PE. Targeting the small GTPase superfamily through their regulatory proteins. Angew Chem Int Ed. 2020;59:6342–66.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kyle Chamberlain for the critical reading of our manuscript.

Funding

This work was supported by NHLBI grants HL131404 (T.W.) and HL117505 (T.W.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Weber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: After publication the authors noticed that a section of their paper was incorrect.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riyad, J.M., Weber, T. Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions. Gene Ther (2021). https://doi.org/10.1038/s41434-021-00243-z

Download citation

Search

Quick links