Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Treating Bietti crystalline dystrophy in a high-fat diet-exacerbated murine model using gene therapy

Abstract

Lipid metabolic deficiencies are associated with many genetic disorders. Bietti crystalline dystrophy (BCD), a blindness-causing inherited disorder with changed lipid profiles, is more common in Chinese and Japanese than other populations. Our results reveal that mouse models lacking Cyp4v3 have less physiological and functional changes than those of BCD patients with this gene defect. After the administration of a high-fat diet (HFD), the occurrence of retinal lesions were both accelerated and aggregated in the Cyp4v3−/− mouse models, implying that changed lipid levels were not only associated factors but also risk factors to BCD patients. Facilitated by the results, we found that the reduced electroretinography waveforms and retinal thickness observed in the HFD-induced mouse models were effectively recovered after subretinal delivery of a human CYP4V2 gene carried by an adeno-associated virus vector, which demonstrates the potential curability of BCD by gene therapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Derivation and long-term evaluation of Cyp4v3−/− mice.
Fig. 2: High-fat diet accelerates and aggravates the retinal lesions of Cyp4v3−/− mice.
Fig. 3: Electroretinography (ERG) changes in Cyp4v3−/− mice fed high-fat diet.
Fig. 4: Gene therapy strategy and retina observation.
Fig. 5: Evaluation of electroretinograms (ERGs) and retinal thickness after AAV injection.
Fig. 6: Evaluation of RPE free fatty acid profile.

References

  1. Friedmann T, Roblin R. Gene therapy for human genetic disease? Science. 1972;175:949–55.

    Article  CAS  Google Scholar 

  2. Mckusick VA. Mendelian inheritance in man and its online version, omim. Am J Hum Genet. 2007;80:588–604.

    Article  CAS  Google Scholar 

  3. Chen R, Shi LS, Hakenberg J, Naughton B, Sklar P, Zhang JG, et al. Analysis of 589,306 genomes identifies individuals resilient to severe mendelian childhood diseases. Nat Biotechnol. 2016;34:531–8.

    Article  CAS  Google Scholar 

  4. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359:eaan4672.

    Article  Google Scholar 

  5. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20:e3015.

    Article  Google Scholar 

  6. Casal M, Haskins M. Large animal models and gene therapy. Eur J Hum Genet. 2006;14:266–72.

    Article  CAS  Google Scholar 

  7. Bietti GB. Ueber familiaeres vorkommen von “ retinitis punctata albescens”(verbunden mit “dystrophia marginalis cristallinea corneae”): Glitzern des glaskoerpers und anderen degenerativen augenveraenderungen. Klin Mbl Augenheilk. 1937;99:737–56.

    Google Scholar 

  8. Jiao XD, Munier FL, Iwata F, Hayakawa M, Kanai A, Lee J, et al. Genetic linkage of bietti crystallin corneoretinal dystrophy to chromosome 4q35. Am J Hum Genet. 2000;67:1309–13.

    Article  CAS  Google Scholar 

  9. Hu DN. Ophthalmic genetics in china. Ophthalmic Paed Gen. 1983;2:39–45.

    Article  Google Scholar 

  10. Li A, Jiao X, Munier FL, Schorderet DF, Yao W, Iwata F, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene cyp4v2. Am J Hum Genet. 2004;74:817–26.

    Article  CAS  Google Scholar 

  11. Kaiser-Kupfer MI, Chan C-C, Markello TC, Crawford MA, Caruso RC, Csaky KG, et al. Clinical biochemical and pathologic correlations in bietti’s crystalline dystrophy. Am J Ophthalmol. 1994;118:569–82.

    Article  CAS  Google Scholar 

  12. Lai TYY, Chu KO, Chan KP, Ng TK, Yam GHF, Lam DSC, et al. Alterations in serum fatty acid concentrations and desaturase activities in bietti crystalline dystrophy unaffected by cyp4v2 genotypes. Investig Ophth Vis Sci. 2010;51:1092–7.

    Article  Google Scholar 

  13. Hata M, Ikeda HO, Iwai S, Iida Y, Gotoh N, Asaka I, et al. Reduction of lipid accumulation rescues bietti’s crystalline dystrophy phenotypes. Proc Natl Acad Sci USA. 2018;115:3936–41.

    Article  CAS  Google Scholar 

  14. Lockhart CM, Nakano M, Rettie AE, Kelly EJ. Generation and characterization of a murine model of bietti crystalline dystrophy. Investig Ophth Vis Sci. 2014;55:5572–81.

    Article  CAS  Google Scholar 

  15. Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using crispr-cas systems. Nat Biotechnol. 2013;31:684–6.

    Article  CAS  Google Scholar 

  16. Fernandez-Godino R, Garland DL, Pierce EA. Isolation, culture and characterization of primary mouse rpe cells. Nat Protoc. 2016;11:1206–18.

    Article  CAS  Google Scholar 

  17. Lam SM, Tong L, Duan X, Petznick A, Wenk MR, Shui G. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res. 2014;55:289–98.

    Article  CAS  Google Scholar 

  18. Tomono T, Hirai Y, Okada H, Miyagawa Y, Adachi K, Sakamoto S, et al. Highly efficient ultracentrifugation-free chromatographic purification of recombinant aav serotype 9. Mol Ther. 2018;11:180–90.

    CAS  Google Scholar 

  19. Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension hek293 cells and continuous harvest of vector from the culture media for gmp fix and flt1 clinical vector. Mol Ther. 2016;24:287–97.

    Article  CAS  Google Scholar 

  20. Ai J, Ibraheim R, Tai PWL, Gao G. A scalable and accurate method for quantifying vector genomes of recombinant adeno-associated viruses in crude lysate. Hum Gene Ther Methods. 2017;28:139–47.

    Article  CAS  Google Scholar 

  21. Meng XH, Guo H, Xu HW, Li QY, Jin X, Bai Y, et al. Identification of novel cyp4v2 gene mutations in 92 chinese families with bietti’s crystalline corneoretinal dystrophy. Mol Vis. 2014;20:1806–14.

    PubMed  PubMed Central  Google Scholar 

  22. Xiao X, Mai G, Li S, Guo X, Zhang Q. Identification of cyp4v2 mutation in 21 families and overview of mutation spectrum in bietti crystalline corneoretinal dystrophy. Biochem Biophys Res Commun. 2011;409:181–6.

    Article  CAS  Google Scholar 

  23. Rossi S, Testa F, Li A, Yaylacioglu F, Gesualdo C, Hejtmancik JF, et al. Clinical and genetic features in italian bietti crystalline dystrophy patients. Br J Ophthalmol. 2013;97:174–9.

    Article  Google Scholar 

  24. Wilson DJ, Weleber RG, Klein ML, Welch RB, Green WR. Bietti’s crystalline dystrophy: a clinicopathologic correlative study. JAMA Ophthalmol. 1989;107:213–21.

    CAS  Google Scholar 

  25. Halford S, Liew G, Mackay DS, Sergouniotis PI, Holt R, Broadgate S, et al. Detailed phenotypic and genotypic characterization of bietti crystalline dystrophy. Ophthalmology. 2014;121:1174–84.

    Article  Google Scholar 

  26. Benchorin G, Calton MA, Beaulieu MO, Vollrath D. Assessment of murine retinal function by electroretinography. Bio Protoc. 2017;7:e2218.

    Google Scholar 

  27. Lee J, Jiao X, Hejtmancik JF, Kaiser-Kupfer M, Gahl WA, Markello TC, et al. The metabolism of fatty acids in human bietti crystalline dystrophy. Investig Ophthalmol Vis Sci. 2001;42:1707–14.

    CAS  Google Scholar 

  28. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genetics. 2001;28:92–5.

    CAS  PubMed  Google Scholar 

  29. Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in leber congenital amaurosis type 10. Nat Med. 2019;25:229–33.

    Article  CAS  Google Scholar 

  30. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21:583–93.

    Article  CAS  Google Scholar 

  31. Mingozzi F, High KA. Immune responses to aav in clinical trials. Current Gene Ther. 2007;7:316–24.

    Article  CAS  Google Scholar 

  32. Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, et al. Long-term clinical improvement in mptp-lesioned primates after gene therapy with aav-haadc. Mol Ther. 2006;14:564–70.

    Article  CAS  Google Scholar 

  33. Choi VW, Mccarty DM, Samulski RJ. Host cell DNA repair pathways in adeno-associated viral genome processing. J Virol. 2006;80:10346–56.

    Article  CAS  Google Scholar 

  34. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, Mcintosh J, et al. Long-term safety and efficacy of factor ix gene therapy in hemophilia b. N Engl J Med. 2014;371:1994–2004.

    Article  Google Scholar 

  35. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, Mcintosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia b. N Engl J Med. 2011;365:2357–65.

    Article  CAS  Google Scholar 

  36. Timmers AM, Zhang H, Squitieri A, Gonzalez-Pola C. Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis. 2001;7:131–7.

    CAS  PubMed  Google Scholar 

  37. Gocho K, Kameya S, Akeo K, Kikuchi S, Usui A, Yamaki K, et al. High-resolution imaging of patients with bietti crystalline dystrophy with cyp4v2 mutation. J Ophthalmol. 2014;2014:283603.

    Article  Google Scholar 

  38. Zhao H, Li Y, He L, Pu W, Yu W, Li Y, et al. In vivo aav-crispr/cas9-mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia. Circulation. 2020;141:67–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Shi-Wen Li, Xi-Li Zhu for their help with confocal laser scanning microscope.

Funding

This work was supported by the National Key Research and Development Program (2019YFA0110800 to WL, 2017YFA0103803 to QZ); the Key Research Program of the Chinese Academy of Sciences (KJZD-SW-L03); the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030403 to WL); the National Natural Science Foundation of China (31621004 to QZ and WL); the Key Research Projects of the Frontier Science of the Chinese Academy of Sciences (QYZDY-SSW-SMC002 to QZ, QYZDB-SSW-SMC022 to WL); the National Postdoctoral Program for Innovative Talents (BX201600161 to ZL); the Beijing Natural Science Foundation (7184236 to XZ);the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT32029 to R.S.); the Chinese Ministry of Science and Technology (2010DFB33430).

Author information

Authors and Affiliations

Authors

Contributions

WL, RS, and QZ conceived the project and designed the experiments; BQ, SW, GJ, ZL, XZ, and LG performed the experiments; BQ and ZL analyzed the data; WL, YZ, and BQ wrote the manuscript with the assistance of the other authors.

Corresponding authors

Correspondence to Ruifang Sui or Wei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qu, B., Wu, S., Jiao, G. et al. Treating Bietti crystalline dystrophy in a high-fat diet-exacerbated murine model using gene therapy. Gene Ther 27, 370–382 (2020). https://doi.org/10.1038/s41434-020-0159-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0159-3

This article is cited by

Search

Quick links