Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sigma-1 receptor activity in primary sensory neurons is a critical driver of neuropathic pain

Subjects

Abstract

The Sigma-1 receptor (σ1R) is highly expressed in the primary sensory neurons (PSNs) that are the critical site of initiation and maintenance of pain following peripheral nerve injury. By immunoblot and immunohistochemistry, we observed increased expression of both σ1R and σ1R-binding immunoglobulin protein (BiP) in the lumbar (L) dorsal root ganglia (DRG) ipsilateral to painful neuropathy induced by spared nerve injury (SNI). To evaluate the therapeutic potential of PSN-targeted σ1R inhibition at a selected segmental level, we designed a recombinant adeno-associated viral (AAV) vector expressing a small hairpin RNA (shRNA) against rat σ1R. Injection of this vector into the L4/L5 DRGs induced downregulation of σ1R in DRG neurons of all size groups, while expression of BiP was not affected. This was accompanied by attenuation of SNI-induced cutaneous mechanical and thermal hypersensitivity. Whole-cell current-clamp recordings of dissociated neurons showed that knockdown of σ1R suppressed neuronal excitability, suggesting that σ1R silencing attenuates pain by reversal of injury-induced neuronal hyperexcitability. These findings support a critical role of σ1R in modulating PSN nociceptive functions, and that the nerve injury-induced elevated σ1R activity in the PSNs can be a significant driver of neuropathic pain. Further understanding the role of PSN-σ1R in pain pathology may open routes to exploit this system for DRG-targeted pain therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IHC characterization of σ1R and BiP expression in DRG and SC of naïve rat.
Fig. 2: Increased σ1R and BiP levels in DRG following SNI.
Fig. 3: Efficient knockdown of σ1R by DRG injection of AAV6-σ1RsiRNA.
Fig. 4: Attenuation of SNI-induced pain behavior by AAV6σ1RsiRNA-mediated PSN-σ1R inhibition.
Fig. 5: Current-clamp analysis of AAV6σ1RsiRNA transduction on DRG neuron excitability.

Similar content being viewed by others

References

  1. Kourrich S, Su TP, Fujimoto M, Bonci A. The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci. 2012;35:762–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsai SA, Su TP. Sigma-1 receptors fine-tune the neuronal networks. Adv Exp Med Biol. 2017;964:79–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front Neurosci. 2019;13:862.

    PubMed  PubMed Central  Google Scholar 

  4. Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol. 2011;70:913–9.

    CAS  PubMed  Google Scholar 

  5. Mavlyutov TA, Guo LW, Epstein ML, Ruoho AE. Role of the sigma-1 receptor in amyotrophic lateral sclerosis (ALS). J Pharmacol Sci. 2015;127:10–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Benarroch EE. Sigma-1 receptor and amyotrophic lateral sclerosis. Neurology. 2018;91:743–7.

    PubMed  Google Scholar 

  7. Couly S, Khalil B, Viguier V, Roussel J, Maurice T, Lievens JC. Sigma-1 receptor is a key genetic modulator in amyotrophic lateral sclerosis. Hum Mol Genet. 2019;29:529–40.

    Google Scholar 

  8. Nguyen L, Lucke-Wold BP, Mookerjee S, Kaushal N, Matsumoto RR. Sigma-1 receptors and neurodegenerative diseases: towards a hypothesis of sigma-1 receptors as amplifiers of neurodegeneration and neuroprotection. Adv Exp Med Biol. 2017;964:133–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Horga A, Tomaselli PJ, Gonzalez MA, Laura M, Muntoni F, Manzur AY, et al. SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome. Neurology. 2016;87:1607–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hayashi T, Su TP. An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma 1 receptor ligand. Expert Opin Ther Targets. 2008;12:45–58.

    CAS  PubMed  Google Scholar 

  11. Marrazzo A, Caraci F, Salinaro ET, Su TP, Copani A, Ronsisvalle G. Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity. Neuroreport. 2005;16:1223–6.

    CAS  PubMed  Google Scholar 

  12. Urfer R, Moebius HJ, Skoloudik D, Santamarina E, Sato W, Mita S, et al. Phase II trial of the Sigma-1 receptor agonist cutamesine (SA4503) for recovery enhancement after acute ischemic stroke. Stroke. 2014;45:3304–10.

    CAS  PubMed  Google Scholar 

  13. Ruscher K, Shamloo M, Rickhag M, Ladunga I, Soriano L, Gisselsson L, et al. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain. 2011;134:732–46.

    PubMed  Google Scholar 

  14. Stracina T, Novakova M. Cardiac sigma receptors - an update. Physiol Res. 2018;67:S561–S576.

    CAS  PubMed  Google Scholar 

  15. Merlos M, Romero L, Zamanillo D, Plata-Salaman C, Vela JM. Sigma-1 receptor and pain. Handb Exp Pharmacol. 2017;244:131–61.

    CAS  PubMed  Google Scholar 

  16. Castany S, Gris G, Vela JM, Verdu E, Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci Rep. 2018;8:3873.

    PubMed  PubMed Central  Google Scholar 

  17. Romero L, Merlos M, Vela JM. Antinociception by sigma-1 receptor antagonists: central and peripheral effects. Adv Pharmacol. 2016;75:179–215.

    CAS  PubMed  Google Scholar 

  18. Davis MP. Sigma-1 receptors and animal studies centered on pain and analgesia. Expert Opin Drug Discov. 2015;10:885–900.

    CAS  PubMed  Google Scholar 

  19. Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol. 2013;716:78–93.

    CAS  PubMed  Google Scholar 

  20. Sanchez-Fernandez C, Entrena JM, Baeyens JM, Cobos EJ. Sigma-1 receptor antagonists: a new class of neuromodulatory analgesics. Adv Exp Med Biol. 2017;964:109–32.

    CAS  PubMed  Google Scholar 

  21. Bravo-Caparros I, Perazzoli G, Yeste S, Cikes D, Baeyens JM, Cobos EJ, et al. Sigma-1 receptor inhibition reduces neuropathic pain induced by partial sciatic nerve transection in mice by opioid-dependent and -independent mechanisms. Front Pharmacol. 2019;10:613.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW, et al. Intrathecal administration of sigma-1 receptor agonists facilitates nociception: involvement of a protein kinase C-dependent pathway. J Neurosci Res. 2008;86:3644–54.

    CAS  PubMed  Google Scholar 

  23. Entrena JM, Sanchez-Fernandez C, Nieto FR, Gonzalez-Cano R, Yeste S, Cobos EJ, et al. Sigma-1 Receptor Agonism Promotes Mechanical Allodynia After Priming the Nociceptive System with Capsaicin. Sci Rep. 2016;6:37835.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Almansa C, Vela JM. Selective sigma-1 receptor antagonists for the treatment of pain. Future Med Chem. 2014;6:1179–99.

    CAS  PubMed  Google Scholar 

  25. Gris G, Portillo-Salido E, Aubel B, Darbaky Y, Deseure K, Vela JM, et al. The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats. Sci Rep. 2016;6:24591.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruna J, Videla S, Argyriou AA, Velasco R, Villoria J, Santos C, et al. Efficacy of a novel sigma-1 receptor antagonist for oxaliplatin-induced neuropathy: a randomized, double-blind, placebo-controlled phase iia clinical trial. Neurotherapeutics. 2018;15:178–89.

    CAS  PubMed  Google Scholar 

  27. de la Puente B, Nadal X, Portillo-Salido E, Sanchez-Arroyos R, Ovalle S, Palacios G, et al. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain. 2009;145:294–303.

    PubMed  Google Scholar 

  28. Castany S, Codony X, Zamanillo D, Merlos M, Verdu E, Boadas-Vaello P. Repeated sigma-1 receptor antagonist mr309 administration modulates central neuropathic pain development after spinal cord injury in mice. Front Pharmacol. 2019;10:222.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cirino TJ, Eans SO, Medina JM, Wilson LL, Mottinelli M, Intagliata S, et al. Characterization of sigma 1 receptor antagonist CM-304 and its analog, AZ-66: novel therapeutics against allodynia and induced pain. Front Pharmacol. 2019;10:678.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gris G, Merlos M, Vela JM, Zamanillo D, Portillo-Salido E. S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund’s adjuvant models in mice. Behav Pharmacol. 2014;25:226–35.

    CAS  PubMed  Google Scholar 

  31. Abadias M, Escriche M, Vaque A, Sust M, Encina G. Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br J Clin Pharmacol. 2013;75:103–17.

    CAS  PubMed  Google Scholar 

  32. Carcole M, Zamanillo D, Merlos M, Fernandez-Pastor B, Cabanero D, Maldonado R. Blockade of the sigma-1 receptor relieves cognitive and emotional impairments associated to chronic osteoarthritis pain. Front Pharmacol. 2019;10:468.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi SR, Moon JY, Roh DH, Yoon SY, Kwon SG, Choi HS, et al. Spinal D-serine increases PKC-dependent GluN1 phosphorylation contributing to the sigma-1 receptor-induced development of mechanical allodynia in a mouse model of neuropathic pain. J Pain. 2017;18:415–27.

    CAS  PubMed  Google Scholar 

  34. Choi SR, Roh DH, Yoon SY, Kang SY, Moon JY, Kwon SG, et al. Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats. Pharmacol Res. 2013;74:56–67.

    CAS  PubMed  Google Scholar 

  35. Drews E, Zimmer A. Central sensitization needs sigma receptors. Pain. 2009;145:269–70.

    PubMed  Google Scholar 

  36. Sanchez-Fernandez C, Montilla-Garcia A, Gonzalez-Cano R, Nieto FR, Romero L, Artacho-Cordon A, et al. Modulation of peripheral mu-opioid analgesia by sigma1 receptors. J Pharmacol Exp Ther. 2014;348:32–45.

    PubMed  Google Scholar 

  37. Kwon SG, Roh DH, Yoon SY, Choi SR, Choi HS, Moon JY, et al. Role of peripheral sigma-1 receptors in ischaemic pain: potential interactions with ASIC and P2X receptors. Eur J Pain. 2016;20:594–606.

    CAS  PubMed  Google Scholar 

  38. Shen B, Behera D, James ML, Reyes ST, Andrews L, Cipriano PW, et al. Visualizing nerve injury in a neuropathic pain model with [(18)F]FTC-146 PET/MRI. Theranostics. 2017;7:2794–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Romero L, Zamanillo D, Nadal X, Sanchez-Arroyos R, Rivera-Arconada I, Dordal A, et al. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol. 2012;166:2289–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gris G, Cobos EJ, Zamanillo D, Portillo-Salido E. Sigma-1 receptor and inflammatory pain. Inflamm Res. 2015;64:377–81.

    CAS  PubMed  Google Scholar 

  41. Moon JY, Choi SR, Roh DH, Yoon SY, Kwon SG, Choi HS, et al. Spinal sigma-1 receptor activation increases the production of D-serine in astrocytes which contributes to the development of mechanical allodynia in a mouse model of neuropathic pain. Pharmacol Res. 2015;100:353–64.

    CAS  PubMed  Google Scholar 

  42. Du K, Wang X, Chi L, Li W. Role of sigma-1 receptor/p38 MAPK inhibition in acupoint catgut embedding-mediated analgesic effects in complete Freund’s adjuvant-induced inflammatory pain. Anesth Analg. 2017;125:662–9.

    CAS  PubMed  Google Scholar 

  43. Mavlyutov TA, Duellman T, Kim HT, Epstein ML, Leese C, Davletov BA, et al. Sigma-1 receptor expression in the dorsal root ganglion: reexamination using a highly specific antibody. Neuroscience. 2016;331:148–57.

    CAS  PubMed  Google Scholar 

  44. Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA. 2002;99:8360–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jercic L, Kostic S, Vitlov Uljevic M, Vukusic Pusic T, Vukojevic K, Filipovic N. Sigma-1 receptor expression in DRG neurons during a carrageenan-provoked inflammation. Anat Rec (Hoboken). 2019;302:1620–7.

    CAS  Google Scholar 

  46. Tejada MA, Montilla-Garcia A, Sanchez-Fernandez C, Entrena JM, Perazzoli G, Baeyens JM, et al. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl). 2014;231:3855–69.

    CAS  Google Scholar 

  47. Morales-Lazaro SL, Gonzalez-Ramirez R, Rosenbaum T. Molecular interplay between the sigma-1 receptor, steroids, and ion channels. Front Pharmacol. 2019;10:419.

    PubMed  PubMed Central  Google Scholar 

  48. Lewis A, Tsai SY, Su TP. Detection of isolated mitochondria-associated ER membranes using the sigma-1 receptor. Methods Mol Biol. 2016;1376:133–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mousseau M, Burma NE, Lee KY, Leduc-Pessah H, Kwok CHT, Reid AR, et al. Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Sci Adv. 2018;4:eaas9846.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Weng TY, Tsai SA, Su TP. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. J Biomed Sci. 2017;24:74.

    PubMed  PubMed Central  Google Scholar 

  51. Wang F, Xiang H, Fischer G, Liu Z, Dupont MJ, Hogan QH, et al. HMG-CoA synthase isoenzymes 1 and 2 localize to satellite glial cells in dorsal root ganglia and are differentially regulated by peripheral nerve injury. Brain Res. 2016;1652:62–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bangaru ML, Weihrauch D, Tang QB, Zoga V, Hogan Q, Wu HE. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Mol Pain. 2013;9:47.

    PubMed  PubMed Central  Google Scholar 

  53. Tsai YL, Zhang Y, Tseng CC, Stanciauskas R, Pinaud F, Lee AS. Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface. J Biol Chem. 2015;290:8049–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Vig S, Buitinga M, Rondas D, Crevecoeur I, van Zandvoort M, Waelkens E, et al. Cytokine-induced translocation of GRP78 to the plasma membrane triggers a pro-apoptotic feedback loop in pancreatic beta cells. Cell Death Dis. 2019;10:309.

    PubMed  PubMed Central  Google Scholar 

  55. Dai Y, Wang H, Ogawa A, Yamanaka H, Obata K, Tokunaga A, et al. Ca2+/calmodulin-dependent protein kinase II in the spinal cord contributes to neuropathic pain in a rat model of mononeuropathy. Eur J Neurosci. 2005;21:2467–74.

    PubMed  Google Scholar 

  56. Hu XM, Zhang H, Xu H, Zhang HL, Chen LP, Cui WQ, et al. Chemokine receptor CXCR4 regulates CaMKII/CREB pathway in spinal neurons that underlies cancer-induced bone pain. Sci Rep. 2017;7:4005.

    PubMed  PubMed Central  Google Scholar 

  57. Mavlyutov TA, Epstein M, Guo LW. Subcellular localization of the sigma-1 receptor in retinal neurons - an electron microscopy study. Sci Rep. 2015;5:10689.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Alberts B. Molecular biology of the cell. 4th edn, Garland Science; 2002.

  59. Yu H, Shin SM, Wang F, Xu H, Xiang H, Cai Y, et al. Transmembrane protein 100 is expressed in neurons and glia of dorsal root ganglia and is reduced after painful nerve injury. Pain Rep. 2019;4:e703.

    PubMed  Google Scholar 

  60. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. 2007;131:596–610.

    CAS  PubMed  Google Scholar 

  61. Tsai SY, Hayashi T, Harvey BK, Wang Y, Wu WW, Shen RF, et al. Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway. Proc Natl Acad Sci USA. 2009;106:22468–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vela JM, Merlos M, Almansa C. Investigational sigma-1 receptor antagonists for the treatment of pain. Expert Opin Investig Drugs. 2015;24:883–96.

    CAS  PubMed  Google Scholar 

  63. Swett JE, Torigoe Y, Elie VR, Bourassa CM, Miller PG. Sensory neurons of the rat sciatic nerve. Exp Neurol. 1991;114:82–103.

    CAS  PubMed  Google Scholar 

  64. Yu H, Fischer G, Ferhatovic L, Fan F, Light AR, Weihrauch D, et al. Intraganglionic AAV6 results in efficient and long-term gene transfer to peripheral sensory nervous system in adult rats. PloS one. 2013;8:e61266.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu H, Shin SM, Xiang H, Chao D, Cai Y, Xu H, et al. AAV-encoded CaV2.2 peptide aptamer CBD3A6K for primary sensory neuron-targeted treatment of established neuropathic pain. Gene Ther. 2019;26:308–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai W, Zhao Q, Shao J, Zhang J, Li L, Ren X, et al. MicroRNA-182 alleviates neuropathic pain by regulating Nav1.7 following spared nerve injury in rats. Sci Rep. 2018;8:16750.

    PubMed  PubMed Central  Google Scholar 

  67. Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis. 2001;8:1–10.

    CAS  PubMed  Google Scholar 

  68. Chung JM, Chung K. Importance of hyperexcitability of DRG neurons in neuropathic pain. Pain Pract. 2002;2:87–97.

    PubMed  Google Scholar 

  69. Kourrich S. Sigma-1 receptor and neuronal excitability. Handb Exp Pharmacol. 2017;244:109–30.

    CAS  PubMed  Google Scholar 

  70. Chen W, Chi YN, Kang XJ, Liu QY, Zhang HL, Li ZH, et al. Accumulation of Cav3.2 T-type calcium channels in the uninjured sural nerve contributes to neuropathic pain in rats with spared nerve injury. Front Mol Neurosci. 2018;11:24.

    PubMed  PubMed Central  Google Scholar 

  71. Liu QY, Chen W, Cui S, Liao FF, Yi M, Liu FY, et al. Upregulation of Cav3.2 T-type calcium channels in adjacent intact L4 dorsal root ganglion neurons in neuropathic pain rats with L5 spinal nerve ligation. Neurosci Res. 2018;142:30–37.

    PubMed  Google Scholar 

  72. Michaelis M, Liu X, Janig W. Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J Neurosci. 2000;20:2742–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52:77–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, et al. Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol. 2003;89:1588–602.

    PubMed  Google Scholar 

  75. Chen Z, Wang T, Fang Y, Luo D, Anderson M, Huang Q, et al. Adjacent intact nociceptive neurons drive the acute outburst of pain following peripheral axotomy. Sci Rep. 2019;9:7651.

    PubMed  PubMed Central  Google Scholar 

  76. Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, et al. Coupled activation of primary sensory neurons contributes to chronic pain. Neuron. 2016;91:1085–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rozanski GM, Li Q, Stanley EF. Transglial transmission at the dorsal root ganglion sandwich synapse: glial cell to postsynaptic neuron communication. Eur J Neurosci. 2013;37:1221–8.

    PubMed  Google Scholar 

  78. Cobos EJ, Entrena JM, Nieto FR, Cendan CM, Del Pozo E. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol. 2008;6:344–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu Q, Li L, Han C, Wei L, Kong L, Lin F. Sigma-1 receptor (sigma1R) is downregulated in hepatic malignant tumors and regulates HepG2 cell proliferation, migration and apoptosis. Oncol Rep. 2018;39:1405–13.

    CAS  PubMed  Google Scholar 

  80. Abdullah CS, Alam S, Aishwarya R, Miriyala S, Panchatcharam M, Bhuiyan MAN, et al. Cardiac dysfunction in the sigma 1 receptor knockout mouse associated with impaired mitochondrial dynamics and bioenergetics. J Am Heart Assoc. 2018;7:e009775.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sabino V, Cottone P, Parylak SL, Steardo L, Zorrilla EP. Sigma-1 receptor knockout mice display a depressive-like phenotype. Behav Brain Res. 2009;198:472–6.

    CAS  PubMed  Google Scholar 

  82. Chevallier N, Keller E, Maurice T. Behavioural phenotyping of knockout mice for the sigma-1 (sigma(1)) chaperone protein revealed gender-related anxiety, depressive-like and memory alterations. J Psychopharmacol. 2011;25:960–75.

    CAS  PubMed  Google Scholar 

  83. Beutler AS, Reinhardt M. AAV for pain: steps towards clinical translation. Gene Ther. 2009;16:461–9.

    CAS  PubMed  Google Scholar 

  84. Mason MR, Ehlert EM, Eggers R, Pool CW, Hermening S, Huseinovic A, et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther. 2010;18:715–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Griesmaier E, Posod A, Gross M, Neubauer V, Wegleiter K, Hermann M, et al. Neuroprotective effects of the sigma-1 receptor ligand PRE-084 against excitotoxic perinatal brain injury in newborn mice. Exp Neurol. 2012;237:388–95.

    CAS  PubMed  Google Scholar 

  86. Bravo-Caparros I, Ruiz-Cantero MC, Perazzoli G, Cronin SJF, Vela JM, Hamed MF, et al. Sigma-1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury. FASEB J. 2020;34:5951–66.

    CAS  PubMed  Google Scholar 

  87. Fischer G, Pan B, Vilceanu D, Hogan QH, Yu H. Sustained relief of neuropathic pain by AAV-targeted expression of CBD3 peptide in rat dorsal root ganglion. Gene Ther. 2014;21:44–51.

    CAS  PubMed  Google Scholar 

  88. Xiang H, Liu Z, Wang F, Xu H, Roberts C, Fischer G, et al. Primary sensory neuron-specific interference of TRPV1 signaling by AAV-encoded TRPV1 peptide aptamer attenuates neuropathic pain. Mol Pain. 2017;13:1744806917717040.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fischer G, Kostic S, Nakai H, Park F, Sapunar D, Yu H, et al. Direct injection into the dorsal root ganglion: technical, behavioral, and histological observations. J Neurosci Methods. 2011;199:43–55.

    PubMed  PubMed Central  Google Scholar 

  90. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.

    CAS  PubMed  Google Scholar 

  91. Wu HE, Gemes G, Zoga V, Kawano T, Hogan QH. Learned avoidance from noxious mechanical simulation but not threshold semmes weinstein filament stimulation after nerve injury in rats. J Pain. 2010;11:280–6.

    PubMed  Google Scholar 

  92. Yu H, Fischer G, Jia G, Reiser J, Park F, Hogan QH. Lentiviral gene transfer into the dorsal root ganglion of adult rats. Mol Pain. 2011;7:63.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sonnemann KJ, Heun-Johnson H, Turner AJ, Baltgalvis KA, Lowe DA, Ervasti JM. Functional substitution by TAT-utrophin in dystrophin-deficient mice. PLoS Med. 2009;6:e1000083.

    PubMed  PubMed Central  Google Scholar 

  94. Liu Z, Wang F, Fischer G, Hogan QH, Yu H. Peripheral nerve injury induces loss of nociceptive neuron-specific Galphai-interacting protein in neuropathic pain rat. Mol Pain. 2016;12:1744806916646380.

    PubMed  PubMed Central  Google Scholar 

  95. Xiang H, Xu H, Fan F, Shin SM, Hogan QH, Yu H. Glial fibrillary acidic protein promoter determines transgene expression in satellite glial cells following intraganglionic adeno-associated virus delivery in adult rats. J Neurosci Res. 2017;96:436–48.

    PubMed  PubMed Central  Google Scholar 

  96. Yu H, Pan B, Weyer A, Wu HE, Meng J, Fischer G, et al. CaMKII controls whether touch is painful. J Neurosci. 2015;35:14086–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pan B, Guo Y, Wu HE, Park J, Trinh VN, Luo ZD, et al. Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury. Pain. 2016;157:2068–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cummins TR, Rush AM, Estacion M, Dib-Hajj SD, Waxman SG. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat Protoc. 2009;4:1103–12.

    CAS  PubMed  Google Scholar 

  99. Joksimovic SL, Joksimovic SM, Tesic V, Garcia-Caballero A, Feseha S, Zamponi GW, et al. Selective inhibition of CaV3.2 channels reverses hyperexcitability of peripheral nociceptors and alleviates postsurgical pain. Sci Signal. 2018;11:eaao4425.

    PubMed  PubMed Central  Google Scholar 

  100. McCallum JB, Kwok WM, Sapunar D, Fuchs A, Hogan QH. Painful peripheral nerve injury decreases calcium current in axotomized sensory neurons. Anesthesiology. 2006;105:160–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Department of Veterans Affairs Rehabilitation Research and Development I01RX001940 (to QHH). The authors would like to thank Dr Tsung-Ping Su (IRP/NIDA/NIH) for providing plasmids encoding σ1R-shRNA and scramble RNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.M., Wang, F., Qiu, C. et al. Sigma-1 receptor activity in primary sensory neurons is a critical driver of neuropathic pain. Gene Ther 29, 1–15 (2022). https://doi.org/10.1038/s41434-020-0157-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0157-5

This article is cited by

Search

Quick links