Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent development of AAV-based gene therapies for inner ear disorders

A Correction to this article was published on 08 July 2021

A Correction to this article was published on 10 August 2020

This article has been updated

Abstract

Gene therapy for auditory diseases is gradually maturing. Recent progress in gene therapy treatments for genetic and acquired hearing loss has demonstrated the feasibility in animal models. However, a number of hurdles, such as lack of safe viral vector with high efficiency and specificity, robust deafness large animal models, translating animal studies to clinic etc., still remain to be solved. It is necessary to overcome these challenges in order to effectively recover auditory function in human patients. Here, we review the progress made in our group, especially our efforts to make more effective and cell type-specific viral vectors for targeting cochlea cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adeno-associated virus-inner ear-Atoh1 (AAV-ie-Atoh1) induces new hair cells (HCs) in vivo with stereocilia.
Fig. 2
Fig. 3: Different strategies are used in constructing the synthetic promoter.

Similar content being viewed by others

Change history

References

  1. Dai P, Huang LH, Wang GJ, Gao X, Qu CY, Chen XW, et al. Concurrent hearing and genetic screening of 180,469 neonates with follow-up in Beijing, China. Am J Hum Genet. 2019;105:803–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron. 2012;75:283–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. LeMasurier M, Gillespie PG. Hair-cell mechanotransduction and cochlear amplification. Neuron. 2005;48:403–15.

    CAS  PubMed  Google Scholar 

  4. Ahmed H, Shubina-Oleinik O, Holt JR. Emerging gene therapies for genetic hearing loss. J Assoc Res Otolaryngol. 2017;18:649–70.

    PubMed  PubMed Central  Google Scholar 

  5. Géléoc GSG, Holt JR. Sound strategies for hearing restoration. Science. 2014;344:1241062.

    PubMed  PubMed Central  Google Scholar 

  6. Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, et al. Cochlear gene therapy for sensorineural hearing loss: current status and major remaining hurdles for translational success. Front Mol Neurosci. 2018;11:221.

    PubMed  PubMed Central  Google Scholar 

  7. Pan B, Akyuz N, Liu X-P, Asai Y, Nist-Lund C, Kurima K, et al. TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron. 2018;99:736–53.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell. 2006;127:277–89.

    CAS  PubMed  Google Scholar 

  9. Takago H, Oshima-Takago T, Moser T. Disruption of otoferlin alters the mode of exocytosis at the mouse inner hair cell ribbon synapse. Front Mol Neurosci. 2019;11:492–492.

    PubMed  PubMed Central  Google Scholar 

  10. Liu XZ, Walsh J, Mburu P, Kendrick-Jones J, Cope MJ, Steel KP, et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet. 1997;16:188–90.

    CAS  PubMed  Google Scholar 

  11. Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, et al. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am J Hum Genet. 2001;69:25–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, et al. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science. 1998;279:1950–4.

    CAS  PubMed  Google Scholar 

  13. Xiang M, Maklad A, Pirvola U, Fritzsch B. Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neurosci. 2003;4:2.

    PubMed  PubMed Central  Google Scholar 

  14. Hu J, Li B, Apisa L, Yu H, Entenman S, Xu M, et al. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23(erl/ erl) mutant mice. Cell Death Dis. 2016;7:e2485–e2485.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang YP, Tang WX, Ahmad S, Sipp JA, Chen P, Lin X. Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. P Natl Acad Sci USA. 2005;102:15201–6.

    CAS  Google Scholar 

  16. Park H-J, Houn Hahn S, Chun Y-M, Park K, Kim H-N. Connexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope. 2000;110:1535–8.

    CAS  PubMed  Google Scholar 

  17. Wagner EL, Shin J-B. Mechanisms of hair cell damage and repair. Trends Neurosci. 2019;42:414–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Franco B, Malgrange B. Concise review: regeneration in mammalian cochlea hair cells: help from supporting cells transdifferentiation. Stem Cells. 2017;35:551–6.

    PubMed  Google Scholar 

  19. Shu Y, Li W, Huang M, Quan YZ, Scheffer D, Tian C, et al. Renewed proliferation in adult mouse cochlea and regeneration of hair cells. Nat Commun. 2019;10:5530.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sacheli R, Delacroix L, Vandenackerveken P, Nguyen L, Malgrange B. Gene transfer in inner ear cells: a challenging race. Gene Ther. 2013;20:237–47.

    CAS  PubMed  Google Scholar 

  21. Akil O, Dyka F, Calvet C, Emptoz A, Lahlou G, Nouaille S, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci USA. 2019;116:4496–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20:1172–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34:204–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep. 2017;7:45524.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshimura H, Shibata SB, Ranum PT, Moteki H, Smith RJH. Targeted allele suppression prevents progressive hearing loss in the mature murine model of human TMC1 deafness. Mol Ther. 2019;27:681–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW. AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun. 2019;10:427–427.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. György B, Meijer EJ, Ivanchenko MV, Tenneson K, Emond F, Hanlon KS, et al. Gene transfer with AAV9-PHP.B rescues hearing in a mouse model of Usher syndrome 3A and transduces hair cells in a non-human primate. Mol Ther. 2019;13:1–13.

    Google Scholar 

  28. Dulon D, Papal S, Patni P, Cortese M, Vincent PF, Tertrais M, et al. Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome. J Clin Investig. 2018;128:3382–401.

    PubMed  PubMed Central  Google Scholar 

  29. Pan B, Askew C, Galvin A, Heman-Ackah S, Asai Y, Indzhykulian AA, et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol. 2017;35:264–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H, et al. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther. 2014;21:71–80.

    CAS  PubMed  Google Scholar 

  31. Shibata SB, Ranum PT, Moteki H, Pan B, Goodwin AT, Goodman SS, et al. RNA interference prevents autosomal-dominant hearing loss. Am J Hum Genet. 2016;98:1101–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Landegger LD, Pan B, Askew C, Wassmer SJ, Gluck SD, Galvin A, et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol. 2017;35:280–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren Y, Landegger LD, Stankovic KM. Gene therapy for human sensorineural hearing loss. Front Cell Neurosci. 2019;13:323–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jüttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB, Hantz P, et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci. 2019;22:1345–56.

    PubMed  Google Scholar 

  35. Hu X, Wang J, Yao X, Xiao Q, Xue Y, Wang S, et al. Screened AAV variants permit efficient transduction access to supporting cells and hair cells. Cell Discov. 2019;5:49.

    PubMed  PubMed Central  Google Scholar 

  36. Lee J, Nist-Lund C, Solanes P, Goldberg H, Wu J, Pan B, et al. Efficient viral transduction in mouse inner ear hair cells with utricle injection and AAV9-PHP.B. Hear Res. 2020;107882.

  37. Shu Y, Tao Y, Wang Z, Tang Y, Li H, Dai P, et al. Identification of adeno-associated viral vectors that target neonatal and adult mammalian inner ear cell subtypes. Hum Gene Ther. 2016;27:687–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu X, Chai R, Guo L, Dong B, Li W, Shu Y, et al. Transduction of adeno-associated virus vectors targeting hair cells and supporting cells in the neonatal mouse cochlea. Front Cell Neurosci. 2019;13:8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tao Y, Huang M, Shu Y, Ruprecht A, Wang H, Tang Y, et al. Delivery of adeno-associated virus vectors in adult mammalian inner-ear cell subtypes without auditory dysfunction. Hum Gene Ther. 2018;29:492–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Qi J, Chen X, Tang M, Chu C, Zhu W, et al. Critical role of spectrin in hearing development and deafness. Sci Adv. 2019;5:eaav7803.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chien WW, McDougald DS, Roy S, Fitzgerald TS, Cunningham LL. Cochlear gene transfer mediated by adeno-associated virus: comparison of two surgical approaches. Laryngoscope. 2015;125:2557–64.

    CAS  PubMed  Google Scholar 

  42. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, et al. Math1: an essential gene for the generation of inner ear hair cells. Science. 1999;284:1837–41.

    CAS  PubMed  Google Scholar 

  43. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA. 2008;105:7827–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Berns KI, Srivastava A. Next generation of adeno-associated virus vectors for gene therapy for human liver diseases. Gastroenterol Clin North Am. 2019;48:319–30.

    PubMed  PubMed Central  Google Scholar 

  45. Buning H, Srivastava A. Capsid modifications for targeting and improving the efficacy of AAV vectors. Mol Ther Methods Clin Dev. 2019;12:248–65.

    PubMed  PubMed Central  Google Scholar 

  46. van Lieshout LP, Domm JM, Rindler TN, Frost KL, Sorensen DL, Medina SJ, et al. A novel triple-mutant AAV6 capsid induces rapid and potent transgene expression in the muscle and respiratory tract of mice. Mol Ther Methods Clin Dev. 2018;9:323–9.

    PubMed  PubMed Central  Google Scholar 

  47. Li W, Asokan A, Wu Z, Van Dyke T, DiPrimio N, Johnson JS, et al. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther. 2008;16:1252–60.

    CAS  PubMed  Google Scholar 

  48. Koerber JT, Jang JH, Schaffer DV. DNA shuffling of adenoassociated virus yields functionally diverse viral progeny. Mol Ther. 2008;16:1703–9.

    CAS  PubMed  Google Scholar 

  49. Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol. 2008;82:5887–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y, et al. In vivo selection yields AAV-B1 capsid for central nervous system and muscle gene therapy. Mol Ther. 2016;24:1247–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mathelier A, Fornes O, Arenillas DJ, Chen C-y, Denay G, Lee J, et al. JASPAR 2016: a major expansion and update of the openaccess database of transcription factor binding profiles. Nucleic Acids Res. 2015;44:D110–5.

    PubMed  PubMed Central  Google Scholar 

  52. Hai T, Cao C, Shang H, Guo W, Mu Y, Yang S, et al. Pilot study of large-scale production of mutant pigs by ENU mutagenesis. Elife. 2017;6:e26248.

    PubMed  PubMed Central  Google Scholar 

  53. Hao QQ, Li L, Chen W, Jiang QQ, Ji F, Sun W, et al. Key genes and pathways associated with inner ear malformation in SOX10 (p.R109W) mutation pigs. Front Mol Neurosci. 2018;11:181.

    PubMed  PubMed Central  Google Scholar 

  54. Chang Q, Wang J, Li Q, Kim Y, Zhou B, Wang Y, et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med. 2015;7:1077–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim MA, Cho HJ, Bae SH, Lee B, Oh SK, Kwon TJ, et al. Methionine sulfoxide reductase B3-targeted In utero gene therapy rescues hearing function in a mouse model of congenital sensorineural hearing loss. Antioxid Redox Signal. 2016;24:590–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim MA, Kim SH, Ryu N, Ma JH, Kim YR, Jung J, et al. Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics. 2019;9:7184–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Iizuka T, Kamiya K, Gotoh S, Sugitani Y, Suzuki M, Noda T, et al. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet. 2015;13:13.

    Google Scholar 

  58. Isgrig K, Shteamer JW, Belyantseva IA, Drummond MC, Fitzgerald TS, Vijayakumar S, et al. Gene therapy restores balance and auditory functions in a mouse model of usher syndrome. Mol Ther. 2017;25:780–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Geng R, Omar A, Gopal RS, Chen H-CD, Stepanyan R, Basch LM, et al. Modeling and preventing progressive hearing loss in Usher syndrome III. Sci Rep. 2017;7:13480.

    PubMed  PubMed Central  Google Scholar 

  60. Al-Moyed H, Cepeda AP, Jung S, Moser T, Kügler S, Reisinger E. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol Med. 2019;11:e9396.

    PubMed  Google Scholar 

  61. Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, et al. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med. 2015;7:295ra108.

    PubMed  PubMed Central  Google Scholar 

  62. Nist-Lund CA, Pan B, Patterson A, Asai Y, Chen T, Zhou W, et al. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat Commun. 2019;10:236.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gao X, Tao Y, Lamas V, Huang M, YehW-H, Pan B, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018;553:217–21.

    CAS  PubMed  Google Scholar 

  64. Simmons DD, Tong B, Schrader AD, Hornak AJ. Oncomodulin identifies different hair cell types in the mammalian inner ear. J Comp Neurol. 2010;518:3785–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Maison S, Liberman LD, Liberman MC Type II cochlear ganglion neurons do not drive the olivocochlear reflex: re-examination of the cochlear phenotype in peripherin knock-out mice. eNeuro. 2016;3:ENEURO.0207–16.2016.

  66. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature. 2000;405:149–55.

    CAS  PubMed  Google Scholar 

  67. McLean WJ, Yin X, Lu L, Lenz DR, McLean D, Langer R, et al. Clonal expansion of Lgr5-positive cells from mammalian cochlea and high-purity generation of sensory hair cells. Cell Rep. 2017;18:1917–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T. Expression of Prox1 during mouse cochlear development. J Comp Neurol. 2006;496:172–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Boström M, Anderson M, Lindholm D, Park K-H, Schrott-Fischer A, Pfaller K, et al. Neural network and “ganglion” formations in vitro: a video microscopy and scanning electron microscopy study on adult cultured spiral ganglion cells. Otol Neurotol. 2007;28:1109–19.

    PubMed  Google Scholar 

  70. Ranum P, Goodwin A, Yoshimura H, Kolbe D, Walls W, Koh JY, et al. Insights into the biology of hearing and deafness revealed by single-cell RNA sequencing. Cell Rep. 2019;26:3160–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rio C, Dikkes P, Liberman MC, Corfas G. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J Comp Neurol. 2002;442:156–62.

    CAS  PubMed  Google Scholar 

  72. Ladrech S, Lenoir M, Ruel J, Puel J-L. Microtubule-associated protein 2 (MAP2) expression during synaptic plasticity in the guinea pig cochlea. Hear Res. 2003;186:85–90.

    CAS  PubMed  Google Scholar 

  73. Liu H, Pecka JL, Zhang Q, Soukup GA, Beisel KW, He DZZ. Characterization of transcriptomes of cochlear inner and outer hair. Cells. 2014;34:11085–95.

    Google Scholar 

  74. Pannier S, Couloigner V, Messaddeq N, Elmaleh-Berges M, Munnich A, Romand R, et al. Activating Fgfr3 Y367C mutation causes hearing loss and inner ear defect in a mouse model of chondrodysplasia. Biochim Biophys Acta. 2009;1792:140–7.

    CAS  PubMed  Google Scholar 

  75. Huang X, Liu J, Wu W, Hu P, Wang Q. Taurine enhances mouse cochlear neural stem cell transplantation via the cochlear lateral wall for replacement of degenerated spiral ganglion neurons via sonic hedgehog signaling pathway. Cell Tissue Res. 2019;378:49–57.

    PubMed  Google Scholar 

  76. Parker MA, Jiang K, Kempfle JS, Mizutari K, Simmons CL, Bieber R, et al. TAK1 expression in the cochlea: a specific marker for adult supporting cells. J Assoc Res Otolaryngol. 2011;12:471–83.

    PubMed  PubMed Central  Google Scholar 

  77. Spencer RF, Shaia WT, Gleason AT, Sismanis A, Shapiro SM. Changes in calcium-binding protein expression in the auditory brainstem nuclei of the jaundiced Gunn rat. Hear Res. 2002;171:129–41.

    CAS  PubMed  Google Scholar 

  78. Hosoya M, Fujioka M, Matsuda S, Ohba H, Shibata S, Nakagawa F, et al. Expression and function of Sox21 during mouse cochlea development. Neurochem Res. 2011;36:1261–9.

    CAS  PubMed  Google Scholar 

  79. Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV. Sensory neuron diversity in the inner ear is shaped by activity. Cell. 2018;174:1229–46.e17.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li S, Mecca A, Kim J, Caprara GA, Wagner EL, Du T-T, et al. Myosin-VIIa is expressed in multiple isoforms and essential for tensioning the hair cell mechanotransduction complex. Nature Communications. 2020;11:2066.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol. 2008;9:65–89.

    PubMed  Google Scholar 

  82. Steevens AR, Glatzer JC, Kellogg CC, Low WC, Santi PA, Kiernan AE. SOX2 is required for inner ear growth and cochlear nonsensory formation before sensory development. Development. 2019;146:dev170522.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vyas P, Wu JS, Jimenez A, Glowatzki E, Fuchs PA. Characterization of transgenic mouse lines for labeling type I and type II afferent neurons in the cochlea. Sci Rep. 2019;9:5549.

    PubMed  PubMed Central  Google Scholar 

  84. Roux I, Hosie S, Johnson SL, Bahloul A, Cayet N, Nouaille S, et al. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum Mol Genet. 2009;18:4615–28.

    CAS  PubMed  Google Scholar 

  85. Nagy I, Bodmer M, Schmid S, Bodmer D. Promyelocytic leukemia zinc finger protein localizes to the cochlear outer hair cells and interacts with prestin, the outer hair cell motor protein. Hear Res. 2005;204:216–22.

    CAS  PubMed  Google Scholar 

  86. Hertzano R, Puligilla C, Chan SL, Timothy C, Depireux DA, Ahmed Z, et al. CD44 is a marker for the outer pillar cells in the early postnatal mouse inner ear. J Assoc Res Otolaryngol. 2010;11:407–18.

    PubMed  PubMed Central  Google Scholar 

  87. Froud KE, Wong ACY, Cederholm JME, Klugmann M, Sandow SL, Julien J-P, et al. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nat Commun. 2015;6:7115.

    CAS  PubMed  Google Scholar 

  88. Pan B, Géléoc Gwenaelle S, Asai Y, Horwitz Geoffrey C, Kurima K, Ishikawa K, et al. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron. 2013;79:504–15.

    CAS  PubMed  Google Scholar 

  89. Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T. Expression of Prox1 during mouse cochlear development. J Comp Neurol. 2006;496:172–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu S, Wang Y, Lu Y, Li W, Liu W, Ma J, et al. The key transcription factor expression in the developing vestibular and auditory sensory organs: a comprehensive comparison of spatial and temporal patterns. Neural Plast. 2018;2018:7513258.

    PubMed  PubMed Central  Google Scholar 

  91. Xie D, Hu P, Xiao ZA, Wu W, Chen Y, Xia K. Subunits of voltage-gated calcium channels in murine spiral ganglion cells. Acta oto-laryngologica. 2007;127:8–12.

    PubMed  Google Scholar 

  92. Zhao HB, Yu N. Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. J Comp Neurol. 2006;499:506–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang T, Scholl ES, Pan N, Fritzsch B, Haeseleer F, Lee A. Expression and localization of CaBP Ca2+ binding proteins in the mouse cochlea. PLoS ONE. 2016;11:e0147495.

    PubMed  PubMed Central  Google Scholar 

  94. Li J, Verkman AS. Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem. 2001;276:31233–7.

    CAS  PubMed  Google Scholar 

  95. Girotto G, Vuckovic D, Buniello A, Lorente-Cánovas B, Lewis M, Gasparini P, et al. Expression and replication studies to identify new candidate genes involved in normal hearing function. PLoS ONE. 2014;9:e85352–e85352.

    PubMed  PubMed Central  Google Scholar 

  96. Scheffer DI, Shen J, Corey DP, Chen ZY. Gene expression by mouse inner ear hair cells during development. J Neurosci. 2015;35:6366–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang EJ, Liu W, Fritzsch B, Bianchi LM, Reichardt LF, Xiang M. Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development. 2001;128:2421–32.

    CAS  PubMed  Google Scholar 

  98. Hickox AE, Wong ACY, Pak K, Strojny C, Ramirez M, Yates JR, et al. Global analysis of protein expression of inner ear hair. Cells. 2017;37:1320–39.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, 81970878 and 31771130 (GZ), Shanghai Municipal Government, and ShanghaiTech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Tao, Y., Wang, Y. et al. Recent development of AAV-based gene therapies for inner ear disorders. Gene Ther 27, 329–337 (2020). https://doi.org/10.1038/s41434-020-0155-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0155-7

This article is cited by

Search

Quick links