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Abstract
Single-strand oligonucleotides provide promising potential as new therapeutics towards various diseases. However, the
efficient delivery of oligonucleotide therapeutics is still challenging due to their susceptibility to nuclease degradation and
the lack of effective carriers for condensation. In this study, we reported the use of natural polyphenol to facilitate the
condensation of single-strand oligonucleotides by cationic polymers. Green tea catechin complexed with single-strand
oligonucleotides to form anionic nanoparticles, which were further coated by low molecular weight cationic polymers to
increase their cell internalization. The resulting core-shell structured nanoparticles, so-called green nanoparticles (GNPs),
showed improved cargo stability, and achieved high efficiency in the delivery of several types of single-strand
oligonucleotides including antisense oligonucleotides, anti-miRNA, and DNAzyme. This study provides a facile strategy for
the efficient delivery of single-strand oligonucleotides.

Introduction

Oligonucleotide therapeutics including antisense oligonu-
cleotides (ASOs), splice-switching oligonucleotides, steric
blockers, aptamers, small Interfering RNA (siRNA), micro-
RNA (miRNA), and other subtypes have shown enormous
potential in the treatment of various diseases [1–3]. Since the
first ASO was reported to inhibit the expression of sarcoma
virus mRNA, oligonucleotide therapeutics have achieved

great promise in clinical applications [4, 5]. Up to now, seven
types of oligonucleotide drugs have been approved by FDA,
namely fomivirsen (antisense nucleotide), pegaptanib (nucleic
acid aptamer), mipomersen (antisense nucleotide), eteplirsen
(antisense nucleotides), defibrotide (deoxyribonucleic acid
derivatives), nusinersen (antisense nucleotides), and patisirna
(siRNA). Note that four of them belong to single-strand oli-
gonucleotides. Besides these drugs, there are still a large
number of oligonucleotide drug candidates being widely
evaluated in clinical studies [6, 7]. The common pharmaco-
logical challenges for single-strand oligonucleotides are
their susceptibility to nuclease degradation, and massive
dose requirement [1, 8]. During the past years, chemical
modification and structural optimization on single-strand oli-
gonucleotides have been proposed to overcome these limita-
tions, i.e., the phosphate backbone of oligonucleotides was
replaced by phosphorothioate, phosphodiamine morpholino,
and peptide backbones [9–11]. These chemical strategies can
alter the charge density and hydrophobicity of single-strand
oligonucleotides, and thus improve their nuclease stability and
base pairing efficiency.

However, chemically modified single-strand oligonucleo-
tides usually possess relatively low membrane permeability,
and limited stability during the long-term therapy [12]. To
address those issues, the single-strand oligonucleotides were
either conjugated with functional ligands, polymers, and
nanoparticles [13, 14], or complexed with cationic polymers,
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liposomes, and nanomaterials [15] to increase their cell
internalization, stability, and transfection efficiency. Cationic
polymers with various chemical structures have widely used
for intracellular delivery of biomolecules such as genes and
proteins [16–21]. However, these materials have been usually
puzzled by their unsatisfied correlations between transfection
efficiency and cytotoxicity [22–24].

To break down the transfection efficiency–cytotoxicity
correlation of polymers in gene delivery, we reported a
facile and efficient siRNA delivery strategy using natural
polyphenols and low molecular weight cationic polymers
[25]. Natural polyphenols have strong binding affinity
with various biomacromolecules such as proteins and
nucleic acids via non-covalent interactions [26]. These
molecules with potent antioxidant, antibacterial, and anti-
tumor activities were widely used as synthons and function
subunits to construct new functional materials for drug
delivery [27–37]. One of the natural polyphenol (-)-epi-
gallocatechin gallate (EGCG) was complexed with siRNA
to form negatively charged nanoparticles, followed by
surface coating on the nanoparticles with a shell of low
molecular weight polymers such as ε-poly-L-lysine (PLL,
from Streptomyces albus). EGCG protects the bound
siRNA from nuclease degradation, and thus improves its
stability during intracellular delivery, and the low mole-
cular weight polymers on the particle surface enable

efficient internalization but limited cytotoxicity. As a
result, the prepared nanoparticles showed excellent gene-
silencing efficiency both in vitro and in vivo. Considering
that EGCG is the major component of green tea, and the
nanoparticles are prepared by physical fabrication of sev-
eral nontoxic compounds, this type of nanoparticles were
termed green nanoparticles (GNPs). Since poor stability is
the major challenge for single-strand oligonucleotides in
gene therapy and most oligonucleotide drugs possess
similar physicochemical properties, we hypothesized that
this GNPs strategy may be also applicable for the delivery
of single-strand oligonucleotides such as ASO, miRNAs,
and DNAzymes (Fig. 1).

Materials and methods

Materials

EGCG, rhodamine B isothiocyanate (Rho), and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) were obtained from Sigma-Aldrich (St. Louis, MO).
PLL (4224 Da) was purchased from Macklin (Shanghai,
China). Rabbit monoclonal antibodies against Bcl-2
(catalog number: ab182858) and β-actin (catalog number:
ab16039) were purchased from Abcam, Inc. (Cambridge,

Fig. 1 GNPs mediated gene delivery. Schematic illustration of GNPs for the delivery of single-strand oligonucleotides including ASO, anti-
miRNA, and DNAzyme.
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UK). Trizol was obtained from NCM Biotech. (Suzhou,
China) and Master-mix with SYBR-green kit was obtained
from Takara, Inc. (Japan). Commercial transfection reagent
Lipofectamine 2000 (LPF) was purchased from Thermo
Fisher Scientific, Inc (Shanghai, China) and TransExcellent-
siRNA (TE) was purchased from Cenji Biotech. (Shanghai,
China). RNase and RNase Inhibitor were obtained from
Yeasen Biotech. (Shanghai, China). GelRed was obtained
from Beyotime Biotech. (Shanghai, China).

ASO, Ps-ASO, and siRNA specifically targeting firefly
luciferase, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and prolyl hydroxylase-2 (PHD2), Bcl-2 DNA-
zyme, anti-microRNA-155 (anti-miR-155), scrambled ASO
nonspecific to any gene (Sc-ASO), and ASO labeled with
carboxyfluorescein at the 5′ end (ASO–FAM) were synthe-
sized by Gene Pharma (Shanghai, China). The sequences of
synthesized oligonucleotides were listed in Supplementary
Table S1. All the chemicals were used as received without
further purification.

Characterization of EGCG/ASO complexes

Overall, 0.5 μg of ASO (40 μM, 1.88 μL) was mixed with
5 μg of EGCG (4.36 mM, 2.5 μL) in 100 μL of diethyl
pyrocarbonate-treated water for 20 min to form EGCG/ASO
complexes. Then the sample was diluted to a total volume
of 1 mL by water. The mean hydrodynamic size and zeta
potential of yielded nanoparticles were determined by
dynamic light scattering (DLS, Zetasizer Nano ZS90,
Malvern). The morphology of the formed complexes was
observed by transmission electron microscopy (TEM,
HT7700, HITACHI, Japan).

Preparation and characterization of GNPs
containing ASO

EGCG/ASO complex containing 0.5 μg ASO was prepared
as described above, followed by the addition of 5 μg PLL
(0.24 mM, 5 μL). The mixture was incubated in 100 μL of
water for 30 min to form the GNPs. The samples were
further diluted to 1 mL with water. The formed GNPs were
characterized by DLS and TEM as described above.

RNase degradation assay

GNPs containing 0.5 μg ASO were prepared as described
above. The dose of ASO is 0.5 μg (40 μM, 1.88 μL), the
weight ratio of EGCG (10.91 mM) to ASO is 10:1, and the
weight ratio of PLL (1.18 mM) to EGCG is fixed at 1:1.
The volume of mixture in each tube was replenished to
10 μL with water. The prepared GNPs were equilibrated for
30 min and the GNPs were treated with 10 μg/mL RNase
(1 mg/mL, 0.1 μL) for 20 min, and then the activity of

RNase was blocked by 0.1 μL RNase inhibitor (40 U/μL).
Overall, 11 μL mixtures were further run on an agarose gel
at 90 V (1.5% w/v gel, 10 min) after the addition of 1 μL
(100 mg/mL) sodium heparin. The gel was stained by
GelRed and visualized by a UV illuminator and the bands
were photographed using an UVIpro Gel documentation
system. Gray scale calculation was performed using Image J
software. Commercial reagents LPF and TE were tested as
controls, and the doses were both 2 μL.

Cell culture and gene-silencing experiments

HeLa, HeLa-Luc (HeLa cells stably expressing firefly luci-
ferase), and A549 cells were cultured in DMEM containing
10% fetal bovine serum (FBS), 100UmL−1 penicillin, and
100mgmL−1 streptomycin at 37 °C and 5% CO2.

The cells were seeded in 24-well plates at a density of
104 cells per well and cultured for 24 h before gene-
silencing experiments (50% confluence). Overall, 1.88 μL
oligonucleotides (40 μM, 0.5 μg ASO-Luci for HeLa-Luc
cells, 0.5 μg ASO-GAPDH and ASO-PHD2 for HeLa cells,
0.8 μg DNAzyme-Bcl-2 for HeLa cells, and 0.5 μg anti-
miR-155 for A549 cells) were mixed with freshly prepared
2.5 μL EGCG (4.36 mM) for 20 min (the EGCG/oligonu-
cleotide weight ratio of 10:1 for ASO and anti-miR-155,
and 6.25:1 for DNAzyme-Bcl-2), followed by incubation
with PLL (0.24 mM, PLL/EGCG weight ratio of 1:1) to
yield GNPs, and further diluted with 100 μL FBS-free
media (10 mM HEPES buffer was added to maintain the
medium pH at 7.4). The GNPs solutions were incubated at
the room temperature for 30 min, and further added with
150 μL culture media before added with cells. The cells
were cultured with GNPs for 6 h. After that, 500 μL media
containing 10% FBS were added into the wells and the
gene-silencing experiments were continued for 18 h. The
final concentration of oligonucleotides in the culture med-
ium was 100 nM. Three repeats were conducted for each
sample in three independent experiments.

The luciferase activity in HeLa-Luc cells was measured
as previous study [25]. The expression levels of GAPDH,
PHD2, and Bcl-2 mRNA in the treated cells were char-
acterized by real-time reverse transcription quantitative
PCR (RT-qPCR). Overall, 0.5 μg extracted RNA in the
treated cells lysis was reverse-transcribed into cDNA and
quantitative analyzed by qPCR (QuantStudio 3 Real-Time
PCR Systems, Thermo Fisher Scientific) with the specific
primers and SYBR-green kit. The related primers for each
target gene were shown in Supplementary Table S2.

The Bcl-2 protein levels in the treated cells was analyzed
by western blot. Generally, 50 μg total protein per lane were
separated on 12% SDS-PAGE gels and transferred onto a
PVDF membrane. The membrane was incubated with rabbit
monoclonal antibodies against Bcl-2 overnight at 4 °C, and
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further incubated with IRDye 800 donkey anti-rabbit (LI-
COR, USA) for 1 h. The protein bands on the gel were
visualized using an Odyssey CLx infrared imaging system
(LI-COR, USA). β-actin was used as the loading control.

Cell apoptosis in the treated cells were measured by an
annexin V-FITC/propidium iodide (PI) apoptosis detection
kit. The treated cells were stained by FITC-labeled Annexin
V and PI for 15 min at the room temperature in the dark.
The samples were quantitatively analyzed by flow cyto-
metry (BD FACS Calibur, San Jose).

Statistical analysis

Adequate sample size was determined according to the
previous studies [23, 25] that performed analogous experi-
ments. Data are represented as the derive average ± standard
deviation throughout the manuscript. The variance was
similar between the groups that are being statistically
compared. Comparisons of data from tests and controls

were analyzed for statistical significance by a one-sided
Student’s t test using MS Excel. For all, p < 0.05 was
considered statistically significant. *p < 0.05; **p < 0.01;
***p < 0.001. In this study, experiments were performed on
at least three independent occasions, and no randomization
and blinding were used. These tests were chosen since they
best match the assumptions of the experiments.

Results and discussion

We first investigated the formation of EGCG/single-strand
oligonucleotide ASO complexes using DLS and TEM. It
was found that EGCG and ASO formed negatively charged
nanoparticles in aqueous solution (−11.3 mV, Fig. 2a).
After coating with PLL, nanoparticles with an average
hydrodynamic size of 127 nm were observed (Fig. 2b), and
the zeta potential of particles increased from −11.3 to
23.4 mV (Fig. 2a), suggesting the successful coating of

Fig. 2 The characterizations of the prepared GNPs. a Zeta potential
of EGCG/ASO complexes and GNPs. TEM image of EGCG/ASO
complexes was insert in the picture. Scale bar is 100 nm. b DLS and
TEM image of GNPs consisted of PLL, EGCG, and ASO. The dose of
ASO was 0.5 μg (133 nM), EGCG to ASO weight ratio was 10:1, and
PLL to EGCG weight ratio was 1:1. Scale bar is 100 nm. c Fluores-
cence spectra of ASO–FAM, EGCG/ASO–FAM, and GNPs consisted
of ASO–FAM, EGCG, and PLL-Rho. The dose of ASO–FAM in each
well was 1.0 μg (267 nM), the weight ratio of EGCG to ASO–FAM
was 5:1, 10:1, 20:1 for GNPs 1, GNPs 2, and GNPs 3, respectively.
PLL to EGCG weight ratio was 1:1 and EGCG to ASO–FAM weight

ratio was 20:1 for the EGCG/ASO complex. d Gel electrophoresis of
GNPs. The dose of ASO was 0.5 μg, and the weight ratio of EGCG to
ASO was 5:1, 10:1, 20:1 for GNPs 1, GNPs 2, and GNPs 3, respec-
tively. PLL to EGCG weight ratio was 1:1. TE/ASO and LPF/ASO
complexes were tested as controls, and the doses of TE and LPF were
1, 2, and 4 μL. e Gel electrophoresis of RNase-treated GNPs. The
numbers on the band represent the percent of retained ASO, which
were calculated by ImageJ software. The material doses in GNPs were
equal to those in GNPs 2 in (d). The doses of TE and LPF were 2 μL,
and the concentration of RNase was 10 μg/mL.
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PLL on the EGCG/ASO complexes. We further investi-
gated the complexation process by fluorescence resonance
energy transfer (FRET) experiment. As shown in Fig. 2c,
the fluorescence of carboxyfluorescein labeled ASO
(ASO–FAM) was significantly decreasing after the addition
of EGCG due to the formation of ASO–FAM complexes.
After coating with rhodamine-labeled PLL (PLL-Rho), the
fluorescence intensity of ASO–FAM was further decreas-
ing, while that of PLL-Rho was increasing (Fig. 2c). The
FRET signals increased with increasing EGCG/PLL to
ASO weight ratios, and this result confirmed the formation
of PLL-coated EGCG/ASO nanoparticles (GNPs: the PLL/
EGCG/ASO weight ratio is 5:5:1, 10:10:1 and 20:20:1,
respectively for GNPs 1–3) in the solutions. Note that the
distinct fluorescence spectra of GNPs 1–3 were observed,
which might be due to their different particle size and
aggregated structures. We also investigated the ASO-binding
capability of GNPs by gel electrophoresis. Two commercial
gene transfection reagents TE (a polymer-based reagent) and
LPF (a lipid-based reagent) were used as the controls. The
ASO was efficiently bound in the nanoparticles when the
EGCG to ASO weight ratio was above 10:1 (Fig. 2d), while
TE and LPF failed to efficiently bind with ASO under
the electrophoresis condition. We further investigated the

protective effects of GNPs on ASO via RNase degradation
experiment. The remained ASO in the GNPs was 78.19%
after RNase (10 μg/mL) treatment for 20min, while those of
TE and LPF were 7.87% and 20.55%, respectively (Fig. 2e),
which suggested that GNPs can efficiently protect ASO from
degradation by RNase and increase the tolerance of ASO to
nuclease. The increased stability of ASO in GNPs might be
due to the core-shell structure of GNPs, in which the oligo-
nucleotides located in the interior of formed nanoparticles
[25]. Since GNPs 2 with the PLL/EGCG/ASO weight ratio of
10:10:1 showed effective ASO binding and complex stability,
this formulation was further used in subsequent gene trans-
fection experiments.

We then tested the efficiency of GNPs in the delivery of
ASO into HeLa-Luc cells to knockdown the firefly luci-
ferase gene. Three type of oligonucleotides including non-
modified ASO, phosphorothioate backbone ASO (Ps-ASO),
and double-strand siRNA targeting luciferase were tested as
cargo molecules. The antisense strand of these three oli-
gonucleotides is identical to each other and the concentra-
tion of oligonucleotides was fixed at 100 nM. As shown in
Fig. 3a, GNPs, TE, and LPF exhibited high gene-silencing
efficiency in the delivery of siRNA. However, the gene
knockdown efficiencies by TE was decreased to 19% and

Fig. 3 Efficiency of GNPs in the delivery of oligonucleotides.
a Efficiency of GNPs in the delivery of siRNA, ASO, and Ps-ASO into
Hela-Luc cells for 24 h. The concentration of oligonucleotides in each
well was fixed at 100 nM. The dose of EGCG in each well was 5 μg,
and the weight ratio of PLL to EGCG was 1:1. GAPDH (b) and PHD2
(c) knockdown efficiency of GNPs in HeLa cells. GNPs were con-
sisted of ASO, EGCG, and PLL. The concentration of ASO was 100
nM (1.0 μg), the weight ratio of EGCG to ASO was 10:1, and the

weight ratio of PLL to EGCG was 1:1. Data are representative of three
independent experiments performed with three technical duplicates in
(a–c). d Cell viability of HeLa cells treated with GNPs and EGCG/
PLL for 24 h. The concentrations of the materials were equal to those
in (b, c). TE and LPF were tested as controls. The doses of TE and
LPF in each well were both 2.0 μL. Data are representative of three
independent experiments performed with five technical duplicates.
**p < 0.01, ***p < 0.001 analyzed by Student’s t test.

Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers 387



6% when Ps-ASO and ASO were used as the cargo oli-
gonucleotides, and the efficiencies of LPF was decreased
to 39% and 2%, respectively. On the contrary, GNPs still
maintained relatively high efficiency in the delivery of
Ps-ASO (64%) and unmodified ASO (59%). The delivery
efficiency of these oligonucleotides by the materials
was in good agreement with their stability. The high
efficiency of GNPs in the delivery of single-strand ASO
and Ps-ASO should be attributed to the excellent stability
of single-strand oligonucleotides in GNPs as well as the
efficient endocytosis and intracellular release [25]. We
subsequently tested the efficiency of GNPs in the delivery
of ASOs targeting different genes on HeLa cells. As
shown in Fig. 3b, c, GNPs significantly knocked down the
expressions of GAPDH and PHD2 in the cells when
delivering single-strand ASO targeting these genes, while
TE, LPF, and GNPs containing scrambled ASO
(Sc-GNPs) exhibited low gene silencing on the cells. In
addition, the GNPs with or without ASO did not cause
obvious cytotoxicity at the transfection concentrations
(Fig. 3d).

miRNA usually inhibits the translation of target mRNA by
complementary pairing, and its function can be inhibited by
anti-miRNA (anti-miR), a type of steric blocker ASOs
[38–40] (Fig. 4a). MiR-155, a typical multifunctional
miRNA, is related to tumorigenesis and metastasis in a variety
of cancer cells and has been recognized as a novel tumor
biomarker for cancer therapy [41, 42]. Anti-miRNA-155 can
be used to inhibit the function of oncogenic miRNA-155. The
pre-complementary pairing of anti-miRNA with miRNA
hinders the recognition of oncogene miRNA-155 with its
target mRNA such as transcription factor CCAAT enhancer
binding protein β (C/EBPβ) and forkhead transcription factor
FOXP3 to prevent it from functioning properly [43]. Herein,
GNPs were further used to deliver anti-miR-155 to inhibit the
function of miR-155. The mRNA expression level of
miRNA-155 was scarcely changed after treatment (Fig. 4b),
but the levels of target gene C/EBPβ and FOXP3 in the
cells were increased by tenfold and fivefold, respectively
(Fig. 4c, d), which were again significantly higher than those
by control materials (TE and LPF). Sc-GNPs containing
nonsense anti-miRNA did not cause significant changes in the

Fig. 4 Efficiency of GNPs in the delivery of anti-miRNA into A549
cells. a Schematic illustration of anti-miRNA delivery by GNPs. The
expression levels of miR-155 (b), C/EBPβ (c) and FOXP3 (d) in
GNPs-treated A549 cells for 24 h. The dose of anti-miR-155 was 0.5
μg in each well (100 nM), the weight ratio of EGCG to anti-miR-155
was 10:1, and the weight ratio of PLL to EGCG was 1:1. ***p < 0.001
analyzed by Student’s t test. Results represent three independent bio-
logical PCR reactions performed in triplicate. in (b–d). e Viability of

GNPs-treated A549 cells for 24 h. The doses of anti-miR-155 in 1, 2, 3
were 0.5 μg in each well (100 nM), 1.0 μg (200 nM), and 1.5 μg (300
nM), respectively. The dose of EGCG was 5.0 μg, the weight ratio of
PLL to EGCG was 1:1, and the doses of TE and LPF were 2.0 μL.
Data are representative of three independent experiments performed
with five technical duplicates. **p < 0.01, ***p < 0.001 between GNPs
3 and other control groups analyzed by Student’s t test.
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expressions corresponding target genes. The results suggested
that anti-miR-155 was successfully delivered into cells and
specifically bound with miR-155 to inhibit its function. As a
result, the viability of A549 cells was significantly reduced
(Fig. 4e). All the evidences above demonstrated that GNPs
can efficiently deliver anti-miRNA into cells to regulate the
expressions of downstream genes.

In comparison with ASOs, DNAzyme has lower off-
target effects due to its special internal structure, which
consists of both binding sites and catalytic sites within the
molecule. Numerous clinical results have pointed out that
DNAzyme is well-tolerated in humans [44–46]. Bcl-2 is an
oncogene and numerous researches have been focused on
the downregulation of Bcl-2 by oligonucleotides to induce
apoptosis in cancer cells [47–49]. We finally tested the
efficiency of GNPs in the delivery of DNAzyme targeting
Bcl-2 on HeLa cells (Fig. 5a). As shown in Fig. 5b, GNPs
containing the DNAzyme significantly reduced the expres-
sion of Bcl-2 mRNA, with an efficiency higher than 80%.
However, GNPs containing nonsense DNAzyme failed to
downregulate the target gene, indicating the successful
delivery of Bcl-2 DNAzyme into the cells. Furthermore, the
GNPs containing Bcl-2 DNAzyme successfully inhibited
Bcl-2 protein levels (Fig. 5c) and caused significantly
increased apoptosis in the cells (Fig. 5d).

Conclusions

Inspired by the high efficiency of GNPs in siRNA delivery,
we investigated the behaviors of GNPs in the delivery of
several single-strand oligonucleotides including ASO, anti-
microRNA, and DNAzyme. The results revealed that GNPs

can efficiently protect the single-strand nucleic acids from
enzymatic degradation, and successfully delivered these
oligonucleotides into cells to exert their biofunctions. This
study further confirmed that GNPs could be developed as a
facile, robust, and efficient strategy in the delivery of oli-
gonucleotide therapeutics. Our future work will test the
efficiency of these GNPs in the delivery of single-strand
oligonucleotides in vivo and evaluate their potentials in
clinical translation.
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Fig. 5 Efficiency of GNPs in the delivery of DNAzyme into HeLa
cells. a Schematic illustration of Bcl-2 DNAzyme delivery by GNPs.
b Bcl-2 mRNA expression in GNPs-treated HeLa cells for 24 h.
Results represent three independent biological PCR reactions per-
formed in triplicate. c Representative Bcl-2 protein expressions in the

treated cells. d Flow cytometry analysis of treated HeLa cells stained
by annexin V and propidium iodide. The concentration of DNAzyme
in each well fixed at 100 nM (0.8 μg), the dose of EGCG and PLL
in each well was both 5.0 μg. The doses of TE and LPF were 2.0 μL.
**p < 0.01, ***p < 0.001 analyzed by Student’s t test.
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