Abstract
Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for X-linked severe combined immunodeficiency using a protocol in which patient CD34+ cells were incubated with two successive transductions. Here we describe an improved protocol for LV delivery to CD34+ cells that simplifies product manipulation, reduces vector consumption, and achieves greater vector copy number (VCN) of repopulating HSCs in mouse xenotransplantation assays. Notable findings include the following: (1) the VCN of CD34+ cells measured shortly after transduction did not always correlate with the VCN of repopulating HSCs after xenotransplantation; (2) single-step transduction at higher CD34+ cell concentrations (2–4 × 106/ml) conserved LV without compromising HSC VCN; (3) poloxamer F108 (LentiBOOST) increased HSC VCN by two- to threefold (average from three donors); (4) although LentiBOOST + prostaglandin E2 combination further increased VCN in vitro, the VCN observed in vivo were similar to LentiBOOST alone; (5) cyclosporine H increased the HSC VCN to a similar or greater extent with LentiBOOST in vivo. Our findings delineate an improved protocol to increase the VCN of HSCs after CD34+ cell transduction with clinically relevant LVs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Naldini L, Trono D, Verma IM. Lentiviral vectors, two decades later. Science. 2016;353:1101–2.
Kuo CY, Kohn DB. Gene therapy for the treatment of primary immune deficiencies. Curr Allergy Asthma Rep. 2016;16:39.
Cavazzana M, Bushman FD, Miccio A, André-Schmutz I, Six E. Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov. 2019;18:447–62.
Thompson AA, Walters MC, Kwiatkowski J, Rasko JE, Ribeil J-A, Hongeng S, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. New Eng J Med. 2018;378:1479–93.
Millington M, Arndt A, Boyd M, Applegate T, Shen S. Towards a clinically relevant lentiviral transduction protocol for primary human CD34+ hematopoietic stem/progenitor cells. PLoS ONE. 2009;4:e6461.
Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E, et al. Preclinical safety and efficacy of human CD34+ cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome. Mol Ther. 2013;21:175–84.
De Ravin SS, Wu X, Moir S, Kardava L, Anaya-O’Brien S, Kwatemaa N, et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med. 2016;8:335ra57.
Abina SH-B, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA. 2015;313:1550–63.
Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341:1233151.
Castro B, Weiss C, Wiviott L, Levy J. Optimal conditions for recovery of the human immunodeficiency virus from peripheral blood mononuclear cells. J Clin Microbiol. 1988;26:2371–6.
Hanenberg H, Hashino K, Konishi H, Hock RA, Kato I, Williams DA. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum Gene Ther. 1997;8:2193–206.
Wang CX, Sather BD, Wang X, Adair J, Khan I, Singh S, et al. Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood. 2014;124:913–23.
Heffner GC, Bonner M, Christiansen L, Pierciey FJ, Campbell D, Smurnyy Y, et al. Prostaglandin E2 increases lentiviral vector transduction efficiency of adult human hematopoietic stem and progenitor cells. Mol Ther. 2018;26:320–8.
Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326:818–23.
Mamcarz E, Zhou S, Lockey T, Abdelsamed H, Cross SJ, Kang G, et al. Lentiviral gene therapy combined with low-dose Busulfan in infants with SCID-X1. New Engl J Med. 2019;380:1525–34.
Malik P, Grimley M, Quinn CT, Shova A, Courtney L, Lutzko C, et al. Gene therapy for sickle cell anemia using a modified gamma globin lentivirus vector and reduced intensity conditioning transplant shows promising correction of the disease phenotype. Blood. 2018;132(suppl 1):1021.
Hauber I, Beschorner N, Schrödel S, Chemnitz J, Kröger N, Hauber J, et al. Improving lentiviral transduction of CD34+ hematopoietic stem and progenitor cells. Hum Gene Ther Method. 2018;29:104–13.
Höfig I, Atkinson MJ, Mall S, Krackhardt AM, Thirion C, Anastasov N. Poloxamer synperonic F108 improves cellular transduction with lentiviral vectors. J Gene Med. 2012;14:549–60.
Greene MR, Lockey T, Mehta PK, Kim Y-S, Eldridge PW, Gray JT, et al. Transduction of human CD34+ repopulating cells with a self-inactivating lentiviral vector for SCID-X1 produced at clinical scale by a stable cell line. Hum Gene Ther Method. 2012;23:297–308.
Throm RE, Bauler M, Wu C-C, Roberts JK, Fan B, Ferrara F et al. Production of Lentiviral Vectors Using 293T Cells Adapted to Grow in Suspension with Serum-Free Media. Mol Ther. 2018;26:58–68.
Bauler M, Roberts JK, Wu C-C, Fan B, Ferrara F, Yip BH, et al. Production of lentiviral vectors using suspension cells grown in serum-free media. Mol Ther Methods Clin Dev. 2020;17:58–68.
McIntosh BE, Brown ME, Duffin BM, Maufort JP, Vereide DT, Slukvin II, et al. Nonirradiated NOD, B6. SCID Il2rγ−/− KitW41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep. 2015;4:171–80.
Amend SR, Valkenburg KC, Pienta KJ. Murine hind limb long bone dissection and bone marrow isolation. J Vis Exp. 2016;110:e53936.
Kim Y-S, Wielgosz M, Ryu B. The engraftment of lentiviral vector-transduced human CD34+ cells into humanized mice. In: Hyun I, De Los Angeles A, editors. Chimera research. New York: Springer Science+Business Media, LLC; 2019, p 91–100.
Zhou S, Bonner MA, Wang Y-D, Rapp S, De Ravin SS, Malech HL, et al. Quantitative shearing linear amplification polymerase chain reaction: an improved method for quantifying lentiviral vector insertion sites in transplanted hematopoietic cell systems. Hum Gene Ther Method. 2014;26:4–12. 27
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol (Methodological). 1995;57:289–300.
Throm RE, Ouma AA, Zhou S, Chandrasekaran A, Lockey T, Greene M, et al. Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood. 2009;113:5104–10.
Bonner M, Ma Z, Zhou S, Ren A, Chandrasekaran A, Gray JT, et al. Development of a second generation stable lentiviral packaging cell line in support of clinical gene transfer protocols. Mol Ther. 2015;23(Suppl 1):S35. (abstract 81).
Petrillo C, Thorne LG, Unali G, Schiroli G, Giordano AM, Piras F, et al. Cyclosporine H overcomes innate immune restrictions to improve lentiviral transduction and gene editing in human hematopoietic stem cells. Cell Stem Cell. 2018;23:820–832.e9.
Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174:6477–89.
Rahmig S, Kronstein-Wiedemann R, Fohgrub J, Kronstein N, Nevmerzhitskaya A, Bornhäuser M, et al. Improved human erythropoiesis and platelet formation in humanized NSGW41 mice. Stem Cell Rep. 2016;7:591–601.
Petrillo C, Cesana D, Piras F, Bartolaccini S, Naldini L, Montini E, et al. Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells. Mol Ther. 2015;23:352–62.
Kajaste-Rudnitski A, Naldini L. Cellular innate immunity and restriction of viral infection: implications for lentiviral gene therapy in human hematopoietic cells. Hum Gene Ther. 2015;26:201–9.
Singh S, Khan I, Khim S, Seymour B, Sommer K, Wielgosz M, et al. Safe and effective gene therapy for murine Wiskott-Aldrich syndrome using an insulated lentiviral vector. Mol Ther Methods Clin Dev. 2017;4:1–16.
Kanter J, Walters MC, Hsieh M, Krishnamurti L, Kwiatkowski JL, Kamble R, et al. Interim results from a phase 1/2 clinical study of lentiglobin gene therapy for severe sickle cell disease. Blood. 2017;130(Suppl 1):527.
Uchida N, Nassehi T, Drysdale CM, Gamer J, Yapundich M, Demirci S, et al. High-efficiency lentiviral transduction of human CD34+ cells in high-density cell culture with poloxamer and prostaglandin E2 supplementation. Mol Ther Methods Clin Dev. 2019;13:187–96.
Ozog S, Timberlake ND, Hermann K, Garijo O, Haworth KG, Shi G, et al. Resveratrol trimer enhances gene delivery to hematopoietic stem cells by reducing antiviral restriction at endosomes. Blood. 2019;134:1298–311.
Schott JW, León-Rico D, Ferreira CB, Buckland K, Santilli G, Armant MA, et al. Enhancing lentiviral and alpharetroviral transduction of human hematopoietic stem cells for clinical application. Mol Ther Methods Clin Dev. 2019;14:134–47.
Masiuk KE, Zhang R, Osborne K, Hollis RP, Campo-Fernandez B, Kohn DB. PGE2 and poloxamer synperonic F108 enhance transduction of human HSPCs with a β-globin lentiviral vector. Mol Ther Methods Clin Dev. 2019;13:390–8.
Cavazzana-Calvo M, Fischer A, Bushman FD, Payen E, Hacein-Bey-Abina S, Leboulch P. Is normal hematopoiesis maintained solely by long-term multipotent stem cells? Blood. 2011;117:4420–4.
Acknowledgements
We dedicate this manuscript to the late Dr Brian Sorrentino whose work on LV-XSCID gene therapy provides new hope for affected patients and their families. We also thank Dr Mitchell Weiss for helpful advice on this manuscript. This work was supported by The National Heart, Lung, and Blood Institute grant P01 HL053749, the Assisi Foundation of Memphis grant #94-000 R18 “Cell and Gene Therapy” and St. Jude Children’s Research Hospital Research Consortium “Novel Gene Therapies for Sickle Cell Disease.” LentiBOOST was acquired from Sirion Biotech GmbH. DJR received support from the Seattle Children’s Program for Cell and Gene Therapy.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Jang, Y., Kim, YS., Wielgosz, M.M. et al. Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy. Gene Ther 27, 545–556 (2020). https://doi.org/10.1038/s41434-020-0150-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41434-020-0150-z
This article is cited by
-
A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy
Gene Therapy (2023)
-
Development of a cGMP-compliant process to manufacture donor-derived, CD45RA-depleted memory CD19-CAR T cells
Gene Therapy (2023)
-
The transformative potential of HSC gene therapy as a genetic medicine
Gene Therapy (2023)