Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Host antibacterial defense of 6–10 Gy γ-irradiated mice subjected to lentiviral vector-based Gas5 gene therapy

Abstract

Gut bacteria-associated sepsis is a serious concern in patients with gastrointestinal acute radiation syndrome (GIARS). In our previous studies, all mice exposed to 8 Gy of whole body γ-irradiation (8 Gy GIARS-mice) died by sepsis stemming from bacterial translocation. M1Mϕ located in the bacterial translocation site (i.e., the mesenteric lymph nodes, MLNs) have been characterized as major antibacterial effector cells. However, M2bMϕ, inhibitor cells for M1Mϕ polarization, predominated in the MLNs of these mice. The reduced expression of long noncoding RNA Gas5 was associated with M2bMϕ polarization. In this study, we tried to reduce the mortality rate of 8 Gy GIARS-mice through Gas5 gene transduction using lentivirus (Gas5 lentivirus). After Gas5 lentivirus injection, Gas5 RNA was overexpressed in MLN-F4/80+ cells of 8 Gy GIARS-mice, and these cells were identified as non-M2bMϕ. All of the 8 Gy GIARS-mice injected with Gas5 lentivirus survived 30 days or more after irradiation, and bacterial translocation and subsequent sepsis were shown to be minimal in these mice. These results indicate that the antibacterial resistance of 8 Gy GIASR-mice can be restored through the modulation of M2bMϕ located in the bacterial translocation site by Gas5 transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gas5 gene transduction into MLN-F4/80+ cells from 8 Gy GIARS-mice.
Fig. 2: Cellular properties of MLN-F4/80+ cells from 8 Gy GIARS-mice injected with Gas5 lentivirus.
Fig. 3: Bacterial translocation and subsequent sepsis in 8 Gy GIARS-mice injected with NC lentivirus or Gas5 lentivirus.

Similar content being viewed by others

References

  1. Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med. 2004;140:1037–51.

    Article  PubMed  Google Scholar 

  2. Igaki H, Nakagawa K, Uozaki H, Akahane M, Hosoi Y, Fukayama M, et al. Pathological changes in the gastrointestinal tract of a heavily radiation-exposed worker at the Tokai-mura criticality accident. J Radiat Res. 2008;49:55–62.

    Article  PubMed  Google Scholar 

  3. Dainiak N. Medical management of acute radiation syndrome and associated infections in a high-casualty incident. J Radiat Res. 2018;59:ii54–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh VK, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int J Radiat Biol. 2017;93:851–69.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki F, Loucas BD, Ito I, Asai A, Suzuki S, Kobayashi M. Survival of mice with gastrointestinal acute radiation syndrome through control of bacterial translocation. J Immunol. 2018;201:77–86.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi M, Nakamura K, Cornforth M, Suzuki F. Role of M2b macrophages in the acceleration of bacterial translocation and subsequent sepsis in mice exposed to whole body 137Cs γ-irradiation. J Immunol. 2012;189:296–303.

    Article  CAS  PubMed  Google Scholar 

  7. Ohama H, Asai A, Ito I, Suzuki S, Kobayashi M, Higuchi K, et al. M2b macrophage elimination and improved resistance of mice with chronic alcohol consumption to opportunistic infections. Am J Pathol. 2015;185:420–31.

    Article  CAS  PubMed  Google Scholar 

  8. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  11. Asai A, Nakamura K, Kobayashi M, Herndon DN, Suzuki F. CCL1 released from M2b macrophages is essentially required for the maintenance of their properties. J Leukoc Biol. 2012;92:859–67.

    Article  CAS  PubMed  Google Scholar 

  12. Ito I, Asai A, Suzuki S, Kobayashi M, Suzuki F. M2b macrophage polarization accompanied with reduction of long noncoding RNA GAS5. Biochem Biophys Res Commun. 2017;493:170–75.

    Article  CAS  PubMed  Google Scholar 

  13. Ji J, Dai X, Yeung SJ, He X. The role of long non-coding RNA GAS5 in cancers. Cancer Manag Res. 2019;11:2729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Markusic DM, Kanitz A, Oude-Elferink RP, Seppen J. Preferential gene transfer of lentiviral vectors to liver-derived cells, using a hepatitis B peptide displayed on GP64. Hum Gene Ther. 2007;18:673–79.

    Article  CAS  PubMed  Google Scholar 

  15. van den Brand BT, Vermeij EA, Waterborg CE, Arntz OJ, Kracht M, Bennink MB, et al. Intravenous delivery of HIV-based lentiviral vectors preferentially transduces F4/80+ and Ly-6C+ cells in spleen, important target cells in autoimmune arthritis. PLoS One. 2013;8:e55356.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Margul DJ, Park J, Boehler RM, Smith DR, Johnson MA, McCreedy DA, et al. Reducing neuroinflammation by delivery of IL-10 encoding lentivirus from multiple-channel bridges. Bioeng Transl Med. 2016;1:136–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kantara C, Moya SM, Houchen CW, Umar S, Ullrich RL, Singh P, et al. Novel regenerative peptide TP508 mitigates radiation-induced gastrointestinal damage by activating stem cells and preserving crypt integrity. Lab Investig. 2015;95:1222–33.

    Article  CAS  PubMed  Google Scholar 

  18. Goo MJ, Park JK, Hong IH, Kim AY, Lee EM, Lee EJ, et al. Increased susceptibility of radiation-induced intestinal apoptosis in SMP30 KO mice. Int J Mol Sci. 2013;14:11084–95.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Banerjee S, Shah SK, Melnyk SB, Pathak R, Hauer-Jensen M, Pawar SA. Cebpd is essential for gamma-Tocotrienol mediated protection against radiation-induced hematopoietic and intestinal injury. Antioxidants. 2018;7:55.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Somosy Z, Horváth G, Telbisz A, Réz G, Pálfia Z. Morphological aspects of ionizing radiation response of small intestine. Micron. 2002;33:167–78.

    Article  CAS  PubMed  Google Scholar 

  21. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    Article  CAS  PubMed  Google Scholar 

  22. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106:345–58.

    Article  CAS  PubMed  Google Scholar 

  23. Arora S, Dev K, Agarwal B, Das P, Syed MA. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223:383–96.

    Article  CAS  PubMed  Google Scholar 

  24. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40:274–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89:557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.

    Article  CAS  PubMed  Google Scholar 

  27. Schneemann M, Schoedon G. Species differences in macrophage NO production are important. Nat Immunol. 2002;3:102.

    Article  CAS  PubMed  Google Scholar 

  28. Munder M. Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009;158:638–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schultze JL. Reprogramming of macrophages-new opportunities for therapeutic targeting. Curr Opin Pharmacol. 2016;26:10–15.

    Article  CAS  PubMed  Google Scholar 

  30. Needham LA, Davidson AH, Bawden LJ, Belfield A, Bone EA, Brotherton DH, et al. Drug targeting to monocytes and macrophages using esterase-sensitive chemical motifs. J Pharmacol Exp Ther. 2011;339:132–42.

    Article  CAS  PubMed  Google Scholar 

  31. Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K, Joberty G, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488:404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thangavel J, Samanta S, Rajasingh S, Barani B, Xuan Y, Dawn B, et al. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. J Cell Sci. 2015;128:3094–105.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujio Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, I., Loucas, B.D., Suzuki, S. et al. Host antibacterial defense of 6–10 Gy γ-irradiated mice subjected to lentiviral vector-based Gas5 gene therapy. Gene Ther 30, 172–179 (2023). https://doi.org/10.1038/s41434-020-00211-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-00211-z

Search

Quick links