Sensitization of ON-bipolar cells with ambient light activatable multi-characteristic opsin rescues vision in mice


Gene therapy-based treatment such as optogenetics offers a potentially powerful way to bypass damaged photoreceptors in retinal degenerative diseases and use the remaining retinal cells for functionalization to achieve photosensitivity. However, current approaches of optogenetic treatment rely on opsins that require high intensity light for activation thus adding to the challenge for use as part of a wearable device. Here, we report AAV2 assisted delivery of highly photosensitive multi-characteristic opsin (MCO1) into ON-bipolar cells of mice with retinal degeneration to allow activation by ambient light. Rigorous characterization of delivery efficacy by different doses of AAV2 carrying MCO1 (vMCO1) into targeted cells showed durable expression over 6 months after delivery as measured by reporter expression. The enduring MCO1 expression was correlated with the significantly improved behavioral outcome, that was longitudinally measured by visual water-maze and optomotor assays. The pro/anti-inflammatory cytokine levels in plasma and vitreous humor of the vMCO1-injected group did not change significantly from baseline or control group. Furthermore, biodistribution studies at various time points after injection in animal groups injected with different doses of vMCO1 showed non-detectable vector copies in non-targeted tissues. Immunohistochemistry of vMCO1 transfected retinal tissues showed bipolar specific expression of MCO1 and the absence of immune/inflammatory response. Furthermore, ocular imaging using SD-OCT showed no change in the structural architecture of vMCO1-injected eyes. Induction of ambient light responsiveness to remaining healthy bipolar cells in subjects with retinal degeneration will allow the retinal circuitry to gain visual acuity without requiring an active stimulation device.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Expression of ambient light activatable multi-characteristic opsin (MCO1) in retinal explant of rd10 mice led to significant photocurrent.
Fig. 2: Kinetics of vMCO1-dose dependent expression in mouse retina.
Fig. 3: Intravitreal injection of vMCO1 in rd10 mice led to ambient-light guided locomotion in a longitudinal manner.
Fig. 4: Improvement of optomotor response in vMCO1-treated rd10 mice at ambient light level.
Fig. 5: No detectable increase in inflammatory response in plasma of rd10 mice after vMCO1 injection.
Fig. 6: No detectable inflammatory response in vitreous humor or immune response in plasma of vMCO1-injected mice.
Fig. 7: Biodistribution show non-detectable levels of the vector in non-targeted organs of intravitreally-injected rd10 mice.
Fig. 8: Intravitreal injection of vMCO1 led to ON-bipolar specific expression in rd10 mice retina without causing inflammatory response.
Fig. 9: Intravitreal injection of vMCO1 did not cause cellular inflammatory response in retina of rd10 mice.


  1. 1.

    Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K, et al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature. 2009;460:225–U87.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Schuchard RA, Naseer S, de Castro K. Characteristics of AMD patients with low vision receiving visual rehabilitation. J Rehabil Res Dev. 1999;36:294–302.

    CAS  PubMed  Google Scholar 

  3. 3.

    Yang ZL, Camp NJ, Sun H, Tong ZZ, Gibbs D, Cameron DJ, et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science. 2006;314:992–3.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308:419–21.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Humayun M, Dorn J, da Cruz L. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012;119:779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Pan ZH, Lu Q, Bi A, Dizhoor AM, Abrams GW. Optogenetic approaches to restoring vision. Annu Rev Vis Sci. 2015;1:185–210.

    Article  PubMed  Google Scholar 

  7. 7.

    Sahel JA, Roska B. Gene therapy for blindness. Annu Rev Neurosci. 2013;36:467–88.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Zrenner E. Will retinal implants restore vision? Science. 2002;295:1022–5.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Humayun MS. Intraocular retinal prosthesis. Trans Am Ophthalmol Soc. 2001;99:271–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF, et al. NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med. 2012;18:791–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis Res. 2003;43:2573–81.

    Article  PubMed  Google Scholar 

  12. 12.

    Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, et al. Retinal prosthesis for the blind. Surv Ophthalmol. 2002;47:335–56.

    Article  PubMed  Google Scholar 

  13. 13.

    Zrenner E. Fighting blindness with microelectronics. Sci Transl Med. 2013;5:210ps16.

    Article  PubMed  Google Scholar 

  14. 14.

    Hetling JR, Baig-Silva MS. Neural prostheses for vision: designing a functional interface with retinal neurons. Neurol Res. 2004;26:21–34.

    Article  PubMed  Google Scholar 

  15. 15.

    Palanker D, Vankov A, Huie P, Baccus S. Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng. 2005;2:S105–20.

    Article  PubMed  Google Scholar 

  16. 16.

    Horsager A, Greenwald SH, Weiland JD, Humayun MS, Greenberg RJ, McMahon MJ, et al. Predicting visual sensitivity in retinal prosthesis patients. Investig Ophthalmol Vis Sci. 2009;50:1483–91.

    Article  Google Scholar 

  17. 17.

    de Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A, et al. Factors affecting perceptual thresholds in epiretinal prostheses. Investig Ophthalmol Vis Sci. 2008;49:2303–14.

    Article  Google Scholar 

  18. 18.

    Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2011;278:1489–97.

    Google Scholar 

  19. 19.

    Chow AY, Pardue MT, Perlman JI, Ball SL, Chow VY, Hetling JR, et al. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. J Rehabil Res Dev. 2002;39:313–21.

    Google Scholar 

  20. 20.

    Zrenner E. Will retinal implants restore vision? Science. 2002;295:1022–5.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH. Light-activated ion channels for remote control of neuronal firing. Nat Neurosci. 2004;7:1381.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Caporale N, Kolstad KD, Lee T, Tochitsky I, Dalkara D, Trauner D, et al. LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther. 2011;19:1212–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Polosukhina A, Litt J, Tochitsky I, Nemargut J, Sychev Y, De Kouchkovsky I, et al. Photochemical restoration of visual responses in blind mice. Neuron. 2012;75:271–82.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wright W, Gajjeraman S, Batabyal S, Pradhan S, Bhattacharya S, Mahapatra V, et al. Restoring vision in mice with retinal degeneration using multicharacteristic opsin. Neurophotonics. 2017;4:041505.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Batabyal S, Cervenka G, Ha JH, Kim YT, Mohanty S. Broad-band activatable white-opsin. PLoS ONE. 2015;10:e0136958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Tochitsky I, Kramer RH. Optopharmacological tools for restoring visual function in degenerative retinal diseases. Curr Opin Neurobiol. 2015;34:74–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Barrett JM, Berlinguer-Palmini R, Degenaar P. Optogenetic approaches to retinal prosthesis. Vis Neurosci. 2014;31:345–54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Marc R, Pfeiffer R, Jones B. Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci. 2014;5:895–901.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Garg SJ, Federman J. Optogenetics, visual prosthesis and electrostimulation for retinal dystrophies. Curr Opin Ophthalmol. 2013;24:407–14.

    Article  PubMed  Google Scholar 

  30. 30.

    Wu C, Ivanova E, Zhang Y, Pan ZH. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS ONE. 2013;8:e66332.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Goetz GA, Mandel Y, Manivanh R, Palanker DV, Cizmar T. Holographic display system for restoration of sight to the blind. J Neural Eng. 2013;10:056021.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Macé E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther. 2015;23:7–16.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010;329:413–7.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Schiller PH, Sandell JH, Maunsell JH. Functions of the ON and OFF channels of the visual system. Nature. 1986;322:824.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hodges H. Maze procedures: the radial-arm and water maze compared. Brain Res Cogn Brain Res. 1996;3:167–81.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investig Ophthalmol Vis Sci. 2004;45:4611–6.

    Article  Google Scholar 

  37. 37.

    Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, Prusky GT. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis Neurosci. 2005;22:677–84.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Tomita H, Sugano E, Isago H, Hiroi T, Wang Z, Ohta E, et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res. 2010;90:429–36.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Li S, Huang L. Nonviral gene therapy: promises and challenges. Gene Ther. 2000;7:31–4.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther. 2011;19:1220–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Gaub BM, Berry MH, Visel M, Holt A, Isacoff EY, Flannery JG. Optogenetic retinal gene therapy with the light gated GPCR vertebrate rhodopsin. Retinal Gene Ther. 2018;1715:177–89.

    CAS  Article  Google Scholar 

  43. 43.

    Berry MH, Holt A, Salari A, Veit J, Visel M, Levitz J, et al. Restoration of high-sensitivity and adapting vision with a cone opsin. Nature Commun. 2019;10:1–12.

    Article  CAS  Google Scholar 

  44. 44.

    Mohanty S, Bhattacharya S, inventors; Nanoscope Technologies LLC, assignee. Optogenetic modulation by multi-characteristic opsins for vision restoration and other applications thereof. Australia patent 2017372351. 2017.

  45. 45.

    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134.

    CAS  Article  Google Scholar 

  46. 46.

    Brankatschk R, Bodenhausen N, Zeyer J, Burgmann H. Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl Environ Microbiol. 2012;78:4481–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Liu Y, McDowell CM, Zhang Z, Tebow HE, Wordinger RJ, Clark AF. Monitoring retinal morphologic and functional changes in mice following optic nerve crush. Investig Ophthalmol Vis Sci. 2014;55:3766–74.

    Article  Google Scholar 

  48. 48.

    Kim BJ, Silverman SM, Liu Y, Wordinger RJ, Pang IH, Clark AF. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 2016;11:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kim BJ, Sprehe N, Morganti A, Wordinger RJ, Clark AF. The effect of postmortem time on the RNA quality of human ocular tissues. Mol Vis. 2013;19:1290–5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors would like to thank Dr. John Repass (ARQ Genetics) for QPCR analysis; Ashutosh Tripathy and Vasu Mahapatra for their help in experiments. The authors would also like to acknowledge proofread by Dr. Darryl Narcisse (Nanoscope) and support from the National Institute of Health (1R01EY025717-01A1, 1R43EY026483-01, 1R43EY025905-01, 1R01 EY028216-01A1, and 2R44EY025905-02A1).

Author information




SG carried out plasmid preparation, MCO1 expression analysis, in vitro/in vivo expression immunoassay, imaging, and behavioral assays; SBa performed the explant preparation, in vitro transfection, patch-clamp, and data analysis. SP carried out behavioral experiments and tissue extraction. SBh carried out behavioral data analysis and participated in discussion and planning of experiments. WW provided input on experimental design, animal model, behavioral assays, and electrophysiology. SM performed the intravitreal injections, confocal/OCT imaging, data analysis, and supervised the project. All authors contributed to the preparation of the paper.

Corresponding author

Correspondence to Samarendra Mohanty.

Ethics declarations

Conflict of interest

SM and SBh have equity interest in Nanoscope Technologies, LLC, which is developing products in Biomedical diagnostics and therapeutic technologies.

Ethical approval

All experimental procedures were conducted according to the Nanoscope Technologies’ Institutional Animal Care and Use Committee approved protocol and standard operating procedures (SOPs).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Batabyal, S., Gajjeraman, S., Pradhan, S. et al. Sensitization of ON-bipolar cells with ambient light activatable multi-characteristic opsin rescues vision in mice. Gene Ther (2020).

Download citation


Quick links