Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury

Abstract

In this study, we aimed to investigate the therapeutic effect of miR-21 in the treatment of spinal cord injury (SCI) as well as its underlying molecular mechanisms. Real-time PCR and western blot were performed to measure the expression of miR-21, PTEN, and PDCD4 in SCI rats. Locomotion recovery assessment, Nissl staining, IHC assay, and TUNEL assay were utilized to observe the therapeutic effect of miR-21 in the treatment of SCI. Bioinformatics analysis and luciferase assay were conducted to establish the signaling pathway of miR-21, PTEN, and PDCD4. The regulatory relationships between miR-21 and PTEN/PDCD4 were further validated by real-time PCR, western blot, MTT assay, and flow cytometry. Compared with sham-operated rats, SCI rats showed decreased expression of miR-21 along with increased expression of PTEN/PDCD4. Exosomes were equally distributed in MSCs transfected with miR-21, PTEN siRNA, or scramble controls. The exosomes isolated from the supernatant of cultured MSCs could improve the functional recovery of SCI rats by reducing SCI-induced neuron loss. In addition, miR-21 was shown to inhibit the expression of PTEN/PDCD4 and suppress neuron cell death. Moreover, PTEN and PDCD4 were validated as virtual targets of miR-21. In addition, the miR-21/PTEN/PDCD4 signaling pathway was shown to enhance cell viability and suppress cell death in vivo. The exosomes collected from the supernatant of transfected MSCs contained miR-21, which could improve the functional recovery of SCI rats and suppress cell death both in vivo and in vitro via the miR-21/PTEN/PDCD4 signaling pathway.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Chiodo AE, Scelza WM, Kirshblum SC, Wuermser LA, Ho CH, Priebe MM. Spinal cord injury medicine. 5. Long-term medical issues and health maintenance. Arch Phys Med Rehabil. 2007;88:S76–83.

    PubMed  Google Scholar 

  2. 2.

    Johnson RL, Brooks CA, Whiteneck GG. Cost of traumatic spinal cord injury in a population-based registry. Spinal Cord. 1996;34:470–80.

    CAS  PubMed  Google Scholar 

  3. 3.

    Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI. Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol. 2003;53:454–68.

    PubMed  Google Scholar 

  4. 4.

    Davies SJ, Field PM, Raisman G. Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp Neurol. 1996;142:203–16.

    CAS  PubMed  Google Scholar 

  5. 5.

    Ho AD, Wagner W, Franke W. Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy. 2008;10:320–30.

    CAS  PubMed  Google Scholar 

  6. 6.

    Neirinckx V, Agirman G, Coste C, Marquet A, Dion V, Rogister B, et al. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Res Ther. 2015;6:211.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma. 2017;34:3388–96.

    PubMed  Google Scholar 

  8. 8.

    Akcakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, et al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011;39:311–8.

    PubMed  Google Scholar 

  9. 9.

    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    CAS  PubMed  Google Scholar 

  10. 10.

    Lei P, Li Y, Chen X, Yang S, Zhang J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 2009;1284:191–201.

    CAS  PubMed  Google Scholar 

  11. 11.

    Liu NK, Wang XF, Lu QB, Xu XM. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol. 2009;219:424–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Polajeva J, Swartling FJ, Jiang Y, Singh U, Pietras K, Uhrbom L, et al. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma. BMC Cancer. 2012;12:378.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Jiang Y, Zhao S, Ding Y, Nong L, Li H, Gao G, et al. MicroRNA21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Mol Med Rep. 2017;16:2522–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, et al. Constitutively active Akt induces enhanced myelination in the CNS. J Neurosci. 2008;28:7174–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Liu T, Chen G, Sun D, Lei M, Li Y, Zhou C, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma. Acta Biochim Biophys Sin. 2017;49:808–16.

    CAS  PubMed  Google Scholar 

  16. 16.

    Fu X, He Y, Wang X, Peng D, Chen X, Li X, et al. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Ther. 2017;8:187.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Matsushita T, Lankford KL, Arroyo EJ, Sasaki M, Neyazi M, Radtke C, et al. Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells. Exp Neurol. 2015;267:152–64.

    PubMed  Google Scholar 

  18. 18.

    Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H, et al. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res. 2010;1343:226–35.

    CAS  PubMed  Google Scholar 

  19. 19.

    Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci. 2009;29:14932–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Spejo AB, Carvalho JL, Goes AM, Oliveira AL. Neuroprotective effects of mesenchymal stem cells on spinal motoneurons following ventral root axotomy: synapse stability and axonal regeneration. Neuroscience. 2013;250:715–32.

    CAS  PubMed  Google Scholar 

  21. 21.

    Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012;29:1614–25.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Trams EG, Lauter CJ, Salem N, Jr. Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981;645:63–70.

    CAS  PubMed  Google Scholar 

  23. 23.

    Katakowski M, Buller B, Wang X, Rogers T, Chopp M. Functional microRNA is transferred between glioma cells. Cancer Res. 2010;70:8259–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:122.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lai. R, Arslan F, Lee M, Sze N, Choo A, Chen T, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4:214–22.

    CAS  PubMed  Google Scholar 

  26. 26.

    Kordelas L, Rebmann V, Ludwig A, Radtke S, Ruesing J, Doeppner T, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28:980–973.

    Google Scholar 

  27. 27.

    Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013;335:201–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30:1556–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lu XC, Zheng JY, Tang LJ, Huang BS, Li K, Tao Y, et al. MiR-133b Promotes neurite outgrowth by targeting RhoA expression. Cell Physiol Biochem. 2015;35:246–58.

    CAS  PubMed  Google Scholar 

  30. 30.

    Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, McGuire TL, et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury. J Neurosci. 2010;30:1839–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci. 2012;32:17935–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wei C, Li L, Kim IK, Sun P, Gupta S. NF-kappaB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radic Res. 2014;48:282–91.

    PubMed  Google Scholar 

  33. 33.

    Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010;411:846–52.

    CAS  PubMed  Google Scholar 

  34. 34.

    Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    CAS  PubMed  Google Scholar 

  35. 35.

    Lankat-Buttgereit B, Goke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell. 2009;101:309–17.

    CAS  PubMed  Google Scholar 

  36. 36.

    Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, Cmarik JL, et al. A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene. 2001;20:669–76.

    CAS  PubMed  Google Scholar 

  37. 37.

    Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283:1026–33.

    CAS  PubMed  Google Scholar 

  38. 38.

    Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res. 2010;87:431–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Huang JH, Cao Y, Zeng L, Wang G, Cao M, Lu HB, et al. Tetramethylpyrazine enhances functional recovery after contusion spinal cord injury by modulation of MicroRNA-21, FasL, PDCD4 and PTEN expression. Brain Res. 2016;1648:35–45.

    CAS  PubMed  Google Scholar 

  40. 40.

    Hu JZ, Huang JH, Zeng L, Wang G, Cao M, Lu HB. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma. 2013;30:1349–60.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Leslie NR, Foti M. Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol Sci. 2011;32:131–40.

    CAS  PubMed  Google Scholar 

  42. 42.

    Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.

    CAS  PubMed  Google Scholar 

  43. 43.

    Stahl JM, Cheung M, Sharma A, Trivedi NR, Shanmugam S, Robertson GP. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res. 2003;63:2881–90.

    CAS  PubMed  Google Scholar 

  44. 44.

    Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem. 2005;93:105–17.

    CAS  PubMed  Google Scholar 

  45. 45.

    Li D, Qu Y, Mao M, Zhang X, Li J, Ferriero D, et al. Involvement of the PTEN-AKT-FOXO3a pathway in neuronal apoptosis in developing rat brain after hypoxia-ischemia. J Cereb Blood Flow Metabol. 2009;29:1903–13.

    CAS  Google Scholar 

  46. 46.

    Zukor K, Belin S, Wang C, Keelan N, Wang X, He Z. Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci. 2013;33:15350–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ohtake Y, Park D, Abdul-Muneer PM, Li H, Xu B, Sharma K, et al. The effect of systemic PTEN antagonist peptides on axon growth and functional recovery after spinal cord injury. Biomaterials. 2014;35:4610–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Danilov CA, Steward O. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Exp Neurol. 2015;266:147–60.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Shanghai Committee of Science and Technology, China (Grant No. 15411970400) and by the Academic Leaders Training Program of Jingan Health Care Bureau of Shanghai (2016). The Program for Outstanding Medical Academic Leader of Shanghai (Grant No.046), and the Key Disciplines Group Construction Project of Pudong Health Bureau of Shanghai (Grant no. PWZxq2017‑11)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guanghui Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Li, Z., Zhi, Z. et al. MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury. Gene Ther 26, 491–503 (2019). https://doi.org/10.1038/s41434-019-0101-8

Download citation

Further reading

Search

Quick links