Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene therapy for refractory angina and cell therapy for heart failure: experience of a Brazilian research group

Abstract

Cell therapy has shown impressive effects in experimental cardiomyopathy models. To a lesser extent, gene therapy has also been studied. In both cases, translation to clinical therapy has been disappointing. This paper is intended to describe the experience and achievements of a multicenter working group located in Porto Alegre, southern Brazil, in experimental and translational research projects for cell-based and gene therapy methods in the treatment of dilated and ischemic cardiomyopathies. The results of preclinical and clinical studies showed that bone marrow mononuclear stem cells indeed have an effect in improving myocardial perfusion and contractile function, but the overall results are poorly translated to the clinical level. Gene therapy studies with direct myocardial injections of naked VEGF 165 plasmid showed improvement in myocardial perfusion and function in animal models. A randomized clinical trial found that this method is safe and improved myocardial perfusion, but the benefits disappeared after 1 year. An animal experiment associating VEGF 165 with angiopoietin was undertaken in mini pigs to extend the durability of that therapy. In conclusion, our efforts to better understand the mechanisms and functions of gene and cell-based therapies in cardiology resulted in significant findings and propose a future look at cell-free therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3:7–11.

    PubMed  PubMed Central  Google Scholar 

  2. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart failure. Int J Cardiol. 2014;171:368–76.

    PubMed  Google Scholar 

  3. Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJ. More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail. 2001;3:315–22.

    CAS  PubMed  Google Scholar 

  4. Chen J, Normand SL, Wang Y, Krumholz HM. National and regional trends in heart failure hospitalization and mortality rates for Medicare beneficiaries, 1998–2008. JAMA. 2011;306:1669–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res. 2013;113:810–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dawn B, Zuba-Surma EK, Abdel-Latif A, Tiwari S, Bolli R. Cardiac stem cell therapy for myocardial regeneration. A clinical perspective. Minerva Cardioangiol. 2005;53:549–64.

    CAS  PubMed  Google Scholar 

  7. Leri A, Rota M, Pasqualini FS, Goichberg P, Anversa P. Origin of cardiomyocytes in the adult heart. Circ Res. 2015;116:150–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Retraction Watch. https://retractionwatch.com/2018/11/21/journals-stamp-expressions-of-concern-on-papers-from-anversas-cardiac-stem-cell-lab. Accessed 7 Dec 2018.

  9. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004;109:656–63.

    PubMed  Google Scholar 

  10. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–5.

    CAS  PubMed  Google Scholar 

  11. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–8.

    PubMed  Google Scholar 

  12. Metra M, Teerlink JR. Heart failure. Lancet 2017;390:1981–95.

    PubMed  Google Scholar 

  13. Mensah GA, Wei GS, Sorlie PD, Fine LJ, Rosenberg Y, Kaufmann PG, et al. Decline in cardiovascular mortality: possible causes and implications. Circ Res 2017;120:366–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng K, Sainsbury P, Fisher M, de Silva R. Management of refractory angina pectoris. Eur Cardiol. 2016;11:69–76.

    PubMed  PubMed Central  Google Scholar 

  15. Thadani U. Recurrent and refractory angina following revascularization procedures in patients with stable angina pectoris. Coron Artery Dis. 2004;15:1–4.

    Google Scholar 

  16. Bokeriya LA, Golukhova EZ, Eremeeva MV, Aslanidi IP, Merzlyakov VY, Georgiev GP, et al. Use of human VEGF (165) gene for therapeutic angiogenesis in coronary patients: first results. Bull Exp Biol Med 2005;140:106–12.

    CAS  PubMed  Google Scholar 

  17. Kalil RA, Salles FB, Giusti II, Rodrigues CG, Han SW, Sant’Anna RT, et al. VEGF gene therapy for angiogenesis in refractory angina: phase I/II clinical trial. Rev Bras Cir Cardiovasc. 2010;25:311–21.

    PubMed  Google Scholar 

  18. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98:2800–4.

    CAS  PubMed  Google Scholar 

  19. Eibel B, Rodrigues CG, Giusti II, Nesralla IA, Prates PR, Sant’Anna RT, et al. Gene therapy for ischemic heart disease: review of clinical trials. Rev Bras Cir Cardiovasc. 2011;26:635–46.

    PubMed  Google Scholar 

  20. Hulot JS, Ishikawa K, Hajjar RJ. Gene therapy for the treatment of heart failure: promise postponed. Eur Heart J. 2016;37:1651–8.

    PubMed  PubMed Central  Google Scholar 

  21. Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018;15:585–600.

    PubMed  PubMed Central  Google Scholar 

  22. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016;18:891–975.

    PubMed  Google Scholar 

  23. Giusti II, Rodrigues CG, Salles FB, Sant’Anna RT, Eibel B, Han SW, et al. High doses of vascular endothelial growth factor 165 safely, but transiently, improve myocardial perfusion in no-option ischemic disease. Hum Gene Ther Methods. 2013;24:298–306.

    CAS  PubMed  Google Scholar 

  24. Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant 2017;36:1037–46.

    PubMed  Google Scholar 

  25. McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res 2017;121:731–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shore S, Grau-Sepulveda MV, Bhatt DL, Heidenreich PA, Eapen ZJ, Hernandez AF, et al. Characteristics, treatments, and outcomes of hospitalized heart failure patients stratified by etiologies of cardiomyopathy. JACC Heart Fail. 2015;3:906–16.

    PubMed  Google Scholar 

  27. Mestroni L, Rocco C, Gregori D, Sinagra G, Di Lenarda A, Miocic S, et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J Am Coll Cardiol. 1999;34:181–90.

    CAS  PubMed  Google Scholar 

  28. Ehlert FA, Cannom DS, Renfroe EG, Greene HL, Ledingham R, Mitchell LB, et al. Comparison of dilated cardiomyopathy and coronary artery disease in patients with life threatening ventricular arrhythmias: differences in presentation and outcome in the AVID registry. Am Heart J. 2001;142:816–22.

    CAS  PubMed  Google Scholar 

  29. Saxon LA, De Marco T. Arrhythmias associated with dilated cardiomyopathy. Card Electrophysiol Rev. 2002;6:18–25.

    PubMed  Google Scholar 

  30. Guarita-Souza LC, Carvalho KA, Woitowicz V, Rebelatto C, Senegaglia A, Hansen P, et al. Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of Chagas disease. Circulation. 2006;114:120–4.

    Google Scholar 

  31. Jenkins GR, Lee T, Moland CL, Vijay V, Herman EH, Lewis SM, et al. Sex-related differential susceptibility to doxorubicin-induced cardiotoxicity in B6C3F1 mice. Toxicol Appl Pharmacol. 2016;310:159–74.

    CAS  PubMed  Google Scholar 

  32. Kodama M, Zhang S, Hanawa H, Saeki M, Inomata T, Suzuki K, et al. Effects of 15-deoxyspergualin on experimental autoimmune giant cell myocarditis of the rat. Circulation 1995;91:1116–22.

    CAS  PubMed  Google Scholar 

  33. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005;112:1128–35.

    PubMed  Google Scholar 

  34. Psaltis PJ, Carbone A, Nelson AJ, Lau DH, Jantzen T, Manavis J, et al. Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischaemic cardiomyopathy. JACC Cardiovasc Interv. 2010;3:974–83.

    PubMed  Google Scholar 

  35. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198–202.

    PubMed  Google Scholar 

  36. Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P, et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res 2013;112:165–73.

    CAS  PubMed  Google Scholar 

  37. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA. 2001;98:10344–49.

    CAS  PubMed  Google Scholar 

  38. Tao Z, Tan S, Chen W, Chen X. Stem cell homing: a potential therapeutic strategy unproven for treatment of myocardial injury. J Cardiovasc Transl Res. 2018;11:403–11.

    PubMed  Google Scholar 

  39. Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res 2016;118:95–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2005;96:127–37.

    CAS  PubMed  Google Scholar 

  41. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–302.

    PubMed  Google Scholar 

  42. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Chugh A, Yang PC. TIME Trial: effect of timing of stem cell delivery following ST-elevation myocardial infarction on the recovery of global and regional left ventricular function: final 2-year analysis. Circ Res 2018;122:479–88.

    CAS  PubMed  Google Scholar 

  43. Gyöngyösi M, Haller PM, Blake DJ, Martin Rendon E. Meta-analysis of cell therapy studies in heart failure and acute myocardial infarction. Circ Res 2018;123:301–8.

    PubMed  Google Scholar 

  44. Zhang S, Ge J, Sun A, Xu D, Qian J, Lin J, et al. Comparison of various kinds of bone marrow stem cells for the repair of infarcted myocardium: single clonally purified non593 hematopoietic mesenchymal stem cells serve as a superior source. J Cell Biochem. 2006;99:1132–47.

    CAS  PubMed  Google Scholar 

  45. Rickard J, Johnston DR, Price J, Tedford R, Baranowski B, Bassiouny M, et al. Reverse ventricular remodeling and long-term survival in patients undergoing cardiac resynchronization with surgically versus percutaneously placed left ventricular pacing leads. Heart Rhythm 2015;12:517–23.

    PubMed  Google Scholar 

  46. Kalil RA, Ott D, Sant’Anna R, Dias E, Marques-Pereira JP, Delgado-Cañedo A, et al. Autologous transplantation of bone marrow mononuclear stem cells by mini-thoracotomy in dilated cardiomyopathy: technique and early results. Sao Paulo Med J 2008;126:75–81.

    PubMed  Google Scholar 

  47. Sant’Anna RT, Fracasso J, Valle FH, Castro I, Nardi NB, Sant’Anna JR, et al. Direct intramyocardial transthoracic transplantation of bone marrow mononuclear cells for non-ischemic dilated cardiomyopathy: INTRACELL, a prospective randomized controlled trial. Rev Bras Cir Cardiovasc. 2014;29:437–47.

    PubMed  PubMed Central  Google Scholar 

  48. Lu Y, Wang Y, Lin M, Zhou J, Wang Zi, Jiang M, et al. A systematic review of randomised controlled trials examining the therapeutic effects of adult bone marrow derived stem cells for non-ischaemic dilated cardiomyopathy. Stem Cell Res Ther 2016;7:186.

    PubMed  PubMed Central  Google Scholar 

  49. Sant’anna RT, Kalil RA, Pretto Neto AS, Pivatto Júnior F, Fracasso J, Sant’Anna JR, et al. Global contractility increment in nonischemic dilated cardiomyopathy after free wall only intramyocardial injection of autologous bone marrow mononuclear cells: an insight over stem cells clinical mechanism of action. Cell Transplant 2010;19:959–64.

    PubMed  Google Scholar 

  50. Neef K, Choi YH, Weichel A, Rahmanian PB, Liakopoulos OJ, Stamm C, et al. The influence of cardiovascular risk factors on bone marrow mesenchymal stromal cell fitness. Cytotherapy 2012;14:670–8.

    CAS  PubMed  Google Scholar 

  51. Ghem C, Dias LD, Sant’Anna RT, Kalil RAK, Markoski M, Nardi NB. Combined analysis of endothelial, hematopoietic, and mesenchymal stem cell compartments shows simultaneous but independent effects of age and heart disease. Stem Cells Int. 2017;2017:5237634.

    Google Scholar 

  52. Dias LD, Casali KR, Ghem C, da Silva MK, Sausen G, Palma PB, et al. Mesenchymal stem cells from sternum: the type of heart disease, ischemic or valvular, does not influence the cell culture establishment and growth kinetics. J Transl Med. 2017;15:161.

    PubMed  PubMed Central  Google Scholar 

  53. Eibel B, Kristochek M, Peres TR, Dias LD, Dartora DR, Casali KR, et al. β-Blockers interfere with cell homing receptors and regulatory proteins in a model of spontaneously hypertensive rats. Cardiovasc Ther 2018;36:e12434.

    PubMed  Google Scholar 

  54. Kristocheck M, Dias LD, Ghem C, Eibel B, Kalil RAK, Markoski MM. The homing of bone marrow stem cells is differentially activated in ischemic and valvular heart diseases and influenced by beta-blockers. J Transl Med. 2018;16:133.

    PubMed  PubMed Central  Google Scholar 

  55. Chatterjee S, Biondi-Zoccai G, Abbate A, D’Ascenzo F, Castagno D, Van Tassell B, et al. Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMJ 2013;346:f55.

    PubMed  PubMed Central  Google Scholar 

  56. Sarkar N, Rück A, Källner G, Y-Hassan S, Blomberg P, Islam KB, et al. Effects of intramyocardial injection of phVEGF-A165 as sole therapy in patients with refractory coronary artery disease—12-month follow-up: angiogenic gene therapy. J Intern Med. 2001;250:373–81.

    CAS  PubMed  Google Scholar 

  57. Fortuin DF, Vale P, Losordo DW, Symes J, DeLaria GA, Tyner JJ, et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol. 2003;92:436–9.

    CAS  PubMed  Google Scholar 

  58. Stewart DJ, Kutryk MJ, Fitchett D, Freeman M, Camack N, Su Y, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 2009;17:1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kalil RA, Teixeira LA, Mastalir ET, Moreno P, Fricke CH, Nardi NB. Experimental model of gene transfection in healthy canine myocardium: perspectives of gene therapy for ischemic heart disease. Arq Bras Cardiol. 2002;79:223–32.

    CAS  PubMed  Google Scholar 

  60. Furlani AP, Kalil RA, Castro I, Cañedo-Delgado A, Barra M, Prates PR, et al. Effects of therapeutic angiogenesis with plasmid VEGF165 on ventricular function in a canine model of chronic myocardial infarction. Rev Bras Cir Cardiovasc. 2009;24:143.

    PubMed  Google Scholar 

  61. Rodrigues CG, Plentz RDM, Dipp T, Salles FB, Giusti II, Sant’Anna RT, et al. VEGF 165 gene therapy for patients with refractory angina: mobilization of endothelial progenitor cells. Arq Bras Cardiol. 2013;101:149–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Eibel B, Markoski MM, Rodrigues CG, Dipp T, de Salles FB, Giusti II, et al. VEGF gene therapy cooperatively recruits molecules from the immune system and stimulates cell homing and angiogenesis in refractory angina. Cytokine 2017;91:44–50.

    CAS  PubMed  Google Scholar 

  63. Oliveira ALA, Scheffer JP, Markoski M, Koche A, Balbinot A, Antunes F, et al. Vascular endothelial growth factor association with angiopoietin 1 promotes improvement in ventricular function after ischemic cardiomyopathy induced in mini pigs. Acta Cir Bras. 2018;33:386–95.

    PubMed  Google Scholar 

  64. Banerjee MN, Bolli R, Hare JM. Clinical studies of cell therapy in cardiovascular medicine: recent developments and future directions. Circ Res 2018;123:266–87.

    CAS  PubMed  Google Scholar 

  65. Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H. Therapeutic effects of mesenchymal stem cell-derived exosomes in cardiovascular disease. Adv Exp Med Biol. 2017;998:179–85.

    CAS  PubMed  Google Scholar 

  66. Arzouni AA, Vargas-Seymour A, Rackham CL, Dhadda P, Huang GC, Choudhary P, et al. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix. Clin Sci. 2017;131:2835–45.

    CAS  PubMed  Google Scholar 

  67. Seth S, Narang R, Bhargava B, Ray R, Mohanty S, Gulati G, et al. Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial. J Am Coll Cardiol. 2006;48:2350–51.

    PubMed  Google Scholar 

  68. Henry TD, Traverse JH, Hammon BL, East CA, Bruckner B, Remmers AE, et al. Safety and efficacy of ixmyelocel-T: an expanded, autologous multi-cellular therapy, in dilated cardiomyopathy. Circ Res 2014;115:730–7.

    CAS  PubMed  Google Scholar 

  69. Martino H, Brofman P, Greco O, Bueno R, Bodanese L, Clausell N, et al. Multicentre, randomized, double blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart Study). Eur Heart J. 2015;36:2898–904.

    PubMed  Google Scholar 

  70. Hamshere S, Arnous S, Choudhury T, Choudry F, Mozid A, Yeo C, et al. Randomized trial of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with non-ischaemic dilated cardiomyopathy: the REGENERATE-DCM clinical trial. Eur Heart J. 2015;36:3061–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

These studies were funded by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), and Ministério da Saúde/Departamento de Ciência e Tecnologia (MS/DECIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Abdala Karam Kalil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sant’Anna, R.T., Eibel, B., Markoski, M.M. et al. Gene therapy for refractory angina and cell therapy for heart failure: experience of a Brazilian research group. Gene Ther 27, 40–50 (2020). https://doi.org/10.1038/s41434-019-0087-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0087-2

Search

Quick links