Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combination of cabazitaxel and p53 gene therapy abolishes prostate carcinoma tumor growth

Abstract

For patients with metastatic prostate cancer, the 5-year survival rate of 31% points to a need for novel therapies and improvement of existing modalities. We propose that p53 gene therapy and chemotherapy, when combined, will provide superior tumor cell killing for the treatment of prostate carcinoma. To this end, we have developed the AdRGD-PGp53 vector which offers autoregulated expression of p53, resulting in enhanced tumor cell killing in vitro and in vivo. Here, we combined AdRGD-PGp53 along with the chemotherapy drugs used in the clinical treatment of prostate carcinoma, mitoxantrone, docetaxel, or cabazitaxel. Our results indicate that all drugs increase phosphorylation of p53, leading to improved induction of p53 targets. In vitro experiments reveal that AdRGD-PGp53 sensitizes prostate cancer cells to each of the drugs tested, conferring increased levels of cell death. In a xenograft mouse model of in situ gene therapy, AdRGD-PGp53 treatment, when combined with cabazitaxel, drastically reduced tumor progression and increased survival rates to 100%. Strikingly, we used a sub-therapeutic dose of cabazitaxel thus avoiding leukopenia, yet still showed potent anti-tumor effects when combined with AdRGD-PGp53 in this mouse model. The AdRGD-PGp53 approach warrants further development for its application in gene therapy of prostate carcinoma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    PubMed  Google Scholar 

  2. Debruyne F. Hormonal therapy of prostate cancer. Semin Urol Oncol. 2002;20(3Suppl 1):4–9.

    PubMed  Google Scholar 

  3. McCullough AR. Sexual dysfunction after radical prostatectomy. Rev Urol. 2005;7(Suppl 2):S3–S10.

    PubMed  PubMed Central  Google Scholar 

  4. Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev Oncol Hematol. 2017;113:292–303.

    PubMed  Google Scholar 

  5. Liu LF. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–75.

    CAS  PubMed  Google Scholar 

  6. Osoba D, Tannock IF, Ernst DS, Neville AJ. Health-related quality of life in men with metastatic prostate cancer treated with prednisone alone or mitoxantrone and prednisone. J Clin Oncol. 1999;17:1654–63.

    CAS  PubMed  Google Scholar 

  7. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, et al. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol. 1996;14:1756–64.

    CAS  PubMed  Google Scholar 

  8. Berry W, Dakhil S, Modiano M, Gregurich M, Asmar L. Phase III study of mitoxantrone plus low dose prednisone versus low dose prednisone alone in patients with asymptomatic hormone refractory prostate cancer. J Urol. 2002;168:2439–43.

    CAS  PubMed  Google Scholar 

  9. Ernst DS, Tannock IF, Winquist EW, Venner PM, Reyno L, Moore MJ, et al. Randomized, double-blind, controlled trial of mitoxantrone/prednisone and clodronate versus mitoxantrone/prednisone and placebo in patients with hormone-refractory prostate cancer and pain. J Clin Oncol. 2003;21:3335–42.

    CAS  PubMed  Google Scholar 

  10. Ringel I, Horwitz SB. Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J Natl Cancer Inst. 1991;83:288–91.

    CAS  PubMed  Google Scholar 

  11. Schimming R, Mason KA, Hunter N, Weil M, Kishi K, Milas L. Lack of correlation between mitotic arrest or apoptosis and antitumor effect of docetaxel. Cancer Chemother Pharmacol. 1999;43:165–72.

    CAS  PubMed  Google Scholar 

  12. Haldar S, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res. 1997;57:229–33.

    CAS  PubMed  Google Scholar 

  13. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–12.

    CAS  PubMed  Google Scholar 

  14. Cisternino S, Bourasset F, Archimbaud Y, Semiond D, Sanderink G, Scherrmann JM. Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of P-glycoprotein at the blood-brain barrier in mice and rats. Br J Pharmacol. 2003;138:1367–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Attard G, Greystoke A, Kaye S, De Bono J. Update on tubulin-binding agents. Pathol Biol (Paris). 2006;54:72–84.

    CAS  Google Scholar 

  16. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376:1147–54.

    PubMed  Google Scholar 

  17. Strauss BE, Costanzi-Strauss E. pCLPG: a p53-driven retroviral system. Virology. 2004;321:165–72.

    CAS  PubMed  Google Scholar 

  18. Bajgelman MC, Strauss BE. Development of an adenoviral vector with robust expression driven by p53. Virology. 2008;371:8–13.

    CAS  PubMed  Google Scholar 

  19. Bajgelman MC, Medrano RF, Carvalho AC, Strauss BE. AAVPG: a vigilant vector where transgene expression is induced by p53. Virology. 2013;447:166–71.

    CAS  PubMed  Google Scholar 

  20. Tamura RE, da Silva Soares RB, Costanzi-Strauss E, Strauss BE. Autoregulated expression of p53 from an adenoviral vector confers superior tumor inhibition in a model of prostate carcinoma gene therapy. Cancer Biol Ther. 2016;17:1221–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tamura RE, Hunger A, Fernandes DC, Laurindo FR, Costanzi-Strauss E, Strauss BE. Induction of oxidants distinguishes susceptibility of prostate carcinoma cell lines to p53 gene transfer mediated by an improved adenoviral vector. Hum Gene Ther. 2017;28:639–53.

    CAS  PubMed  Google Scholar 

  22. Merkel CA, Medrano RF, Barauna VG, Strauss BE. Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo. Cancer Gene Ther. 2013;20:317–25.

    CAS  PubMed  Google Scholar 

  23. Peng HH, Wu S, Davis JJ, Wang L, Roth JA, Marini FC 3rd, et al. A rapid and efficient method for purification of recombinant adenovirus with arginine-glycine-aspartic acid-modified fibers. Anal Biochem. 2006;354:140–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Merkel CA, da Silva Soares RB, de Carvalho AC, Zanatta DB, Bajgelman MC, Fratini P, et al. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6. BMC Cancer. 2010;10:316.

    PubMed  PubMed Central  Google Scholar 

  25. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.

    CAS  PubMed  Google Scholar 

  26. Radhakrishnan S, Miranda E, Ekblad M, Holford A, Pizarro MT, Lemoine NR, et al. Efficacy of oncolytic mutants targeting pRb and p53 pathways is synergistically enhanced when combined with cytotoxic drugs in prostate cancer cells and tumor xenografts. Hum Gene Ther. 2010;21:1311–25.

    CAS  PubMed  Google Scholar 

  27. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–34.

    CAS  PubMed  Google Scholar 

  28. Loughery J, Cox M, Smith LM, Meek DW. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res. 2014;42:7666–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther. 2005;16:1016–27.

    CAS  PubMed  Google Scholar 

  30. Guo W, Song H. Development of gene therapeutics for head and neck cancer in china: from bench to bedside. Hum Gene Ther. 2018;29:180–7.

    CAS  PubMed  Google Scholar 

  31. Ko SC, Gotoh A, Thalmann GN, Zhau HE, Johnston DA, Zhang WW, et al. Molecular therapy with recombinant p53 adenovirus in an androgen-independent, metastatic human prostate cancer model. Hum Gene Ther. 1996;7:1683–91.

    CAS  PubMed  Google Scholar 

  32. Asgari K, Sesterhenn IA, McLeod DG, Cowan K, Moul JW, Seth P, et al. Inhibition of the growth of pre-established subcutaneous tumor nodules of human prostate cancer cells by single injection of the recombinant adenovirus p53 expression vector. Int J Cancer J Int du Cancer. 1997;71:377–82.

    CAS  Google Scholar 

  33. Eastham JA, Hall SJ, Sehgal I, Wang J, Timme TL, Yang G, et al. In vivo gene therapy with p53 or p21 adenovirus for prostate cancer. Cancer Res. 1995;55:5151–5.

    CAS  PubMed  Google Scholar 

  34. Tamura RE, Hunger A, Fernandes D, Laurindo F, Costanzi-Strauss E, Strauss BE Induction of oxidants distinguishes susceptibility of prostate carcinoma cell lines to p53 gene transfer mediated by an improved adenoviral vector. Hum Gene Ther 2017;28:639-53.

    CAS  PubMed  Google Scholar 

  35. Sasaki R, Shirakawa T, Zhang ZJ, Tamekane A, Matsumoto A, Sugimura K, et al. Additional gene therapy with Ad5CMV-p53 enhanced the efficacy of radiotherapy in human prostate cancer cells. Int J Radiat Oncol Biol Phys. 2001;51:1336–45.

    CAS  PubMed  Google Scholar 

  36. Cowen D, Salem N, Ashoori F, Meyn R, Meistrich ML, Roth JA, et al. Prostate cancer radiosensitization in vivo with adenovirus-mediated p53 gene therapy. Clin Cancer Res. 2000;6:4402–8.

    CAS  PubMed  Google Scholar 

  37. Gjerset R, Haghighi A, Lebedeva S, Mercola D. Gene therapy approaches to sensitization of human prostate carcinoma to cisplatin by adenoviral expression of p53 and by antisense jun kinase oligonucleotide methods. Methods Mol Biol. 2001;175:495–520.

    CAS  PubMed  Google Scholar 

  38. Chuang JC, Sheu GT, Wang PC, Liao FT, Liu WS, Huang CF, et al. Docetaxel and 5-fluorouracil induce human p53 tumor suppressor gene transcription via a short sequence at core promoter element. Toxicol Vitr. 2012;26:678–85.

    CAS  Google Scholar 

  39. Liu C, Zhu Y, Lou W, Nadiminty N, Chen X, Zhou Q, et al. Functional p53 determines docetaxel sensitivity in prostate cancer cells. Prostate. 2013;73:418–27.

    CAS  PubMed  Google Scholar 

  40. Gan L, Wang J, Xu H, Yang X. Resistance to docetaxel-induced apoptosis in prostate cancer cells by p38/p53/p21 signaling. Prostate. 2011;71:1158–66.

    CAS  PubMed  Google Scholar 

  41. Nozawa M, Mukai H, Takahashi S, Uemura H, Kosaka T, Onozawa Y, et al. Japanese phase I study of cabazitaxel in metastatic castration-resistant prostate cancer. Int J Clin Oncol. 2015;20:1026–34.

    CAS  PubMed  Google Scholar 

  42. Heidenreich A, Bracarda S, Mason M, Ozen H, Sengelov L, Van Oort I, et al. Safety of cabazitaxel in senior adults with metastatic castration-resistant prostate cancer: results of the European compassionate-use programme. Eur J Cancer. 2014;50:1090–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Roger Chammas and his staff for ongoing support and critical discussions. We thank Otto Luiz Dutra Cerqueira for assistance during the preparation of this manuscript. This work was a collaborative effort with Sanofi-Aventis which facilitated the purchase of the cabazitaxel used here.

Funding

Financial support was received from the São Paulo Research Foundation, FAPESP (RET, 2011/21256–8; BES, 2013/25167–5 and 2015/26580–9) and from Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (RET, 442738/2014–5; 302888/2017–9, BES). Financial support was provided by Sanofi-Aventis (ISS PRECLL 06945) in order to obtain the cabazitaxel used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan E. Strauss.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, R.E., Lana, M.G., Costanzi-Strauss, E. et al. Combination of cabazitaxel and p53 gene therapy abolishes prostate carcinoma tumor growth. Gene Ther 27, 15–26 (2020). https://doi.org/10.1038/s41434-019-0071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0071-x

This article is cited by

Search

Quick links