Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unilateral ex vivo gene therapy by GDNF in epileptic rats

Abstract

Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults. This neurological disorder is characterized by focal seizures originating in the temporal lobe, often with secondary generalization. A variety of pharmacological treatments exist for patients suffering from focal seizures, but systemically administered drugs offer only symptomatic relief and frequently cause unwanted side effects. Moreover, available drugs are ineffective in one third of the epilepsy patients. Thus, developing more targeted and effective treatment strategies for focal seizures, originating from, e.g., the temporal lobe, is highly warranted. In order to deliver potential anti-epileptic agents directly into the seizure focus we used encapsulated cell biodelivery (ECB), a specific type of ex vivo gene therapy. Specifically, we asked whether unilateral delivery of glial cell line-derived neurotrophic factor (GDNF), exclusively into the epileptic focus, would suppress already established spontaneous recurrent seizures (SRS) in rats. Our results show that GDNF delivered by ECB devices unilaterally into the seizure focus in the hippocampus effectively decreases the number of SRS in epileptic rats. Thus, our study demonstrates that focal unilateral delivery of neurotrophic factors, such as GDNF, using ex vivo gene therapy based on ECB devices could be an effective anti-epileptic strategy providing a bases for the development of a novel, alternative, treatment for focal epilepsies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37:2887–99.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yilmazer-Hanke DM, Wolf HK, Schramm J, Elger CE, Wiestler OD, Blümcke I. Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J Neuropathol Exp Neurol. 2000;59:907–20.

    Article  CAS  PubMed  Google Scholar 

  3. Kanter-Schlifke I, Fjord-Larsen L, Kusk P, Ängehagen M, Wahlberg L, Kokaia M. GDNF released from encapsulated cells suppresses seizure activity in the epileptic hippocampus. Exp Neurol. 2009;216:413–9.

    Article  CAS  PubMed  Google Scholar 

  4. Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. Lancet. 2006;367:1087–100.

    Article  PubMed  Google Scholar 

  5. Engel J, McDermott M, Wiebe S, Langfitt JT, Stern JM, Dewar S. Early surgical therapy for drug-resistant temporal lobe epilepsy. J Am Vet Med Assoc. 2012;307:922–30.

    Article  CAS  Google Scholar 

  6. Eriksdotter-Jönhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O, Andreasen N, et al. Encapsulated cell biodelivery of nerve growth factor to the basal forebrain in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2012;33:18–28.

    Article  PubMed  Google Scholar 

  7. Tornøe J, Torp M, Jørgensen JR, Emerich DF, Thanos C, Bintz B, et al. Encapsulated cell-based biodelivery of Meteorin is neuroprotective in the quinolinic acid rat model of neurodegenerative disease. Restor Neurol Neurosci. 2012;30:225–36.

    PubMed  Google Scholar 

  8. Nikitidou L, Torp M, Fjord-Larsen L, Kusk P, Wahlberg LU, Kokaia M. Encapsulated galanin-producing cells attenuate focal epileptic seizures in the hippocampus. Epilepsia. 2014;55:167–74.

    Article  CAS  PubMed  Google Scholar 

  9. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Sci (80-). 1993;260:1130 LP–1132.

    Article  Google Scholar 

  10. Springer JE, Mu X, Bergmann LW, Trojanowski JQ. Expression of GDNF mRNA in Rat and Human Nervous Tissue. Exp Neurol. 1994;p.127:167–70.

    Article  CAS  PubMed  Google Scholar 

  11. Pochon A-M,N, Menoud A, Tseng JL, Zurn AD, Aebischer P. Neuronal GDNF expression in the adult rat nervous system identified bu in situ hybridisation. Eur J Neurosci. 1997;9:463–71.

    Article  CAS  PubMed  Google Scholar 

  12. Burazin TCD, Gundlach AL. Localization of GDNF/neurturin receptor (c-ret, GFRα-1 and α-2) mRNAs in postnatal rat brain: Differential regional and temporal expression in hippocampus, cortex and cerebellum. Mol Brain Res. 1999;73:151–71.

    Article  CAS  PubMed  Google Scholar 

  13. Martin D, Miller G, Rosendahl M, Russell DA. Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat. Brain Res. 1995;683:172–8.

    Article  CAS  PubMed  Google Scholar 

  14. Yoo YM, Lee CJ, Lee U, Kim YJ. Neuroprotection of adenoviral-vector-mediated GDNF expression against kainic-acid-induced excitotoxicity in the rat hippocampus. Exp Neurol. 2006;200:407–17.

    Article  CAS  PubMed  Google Scholar 

  15. Kanter-Schlifke I, Georgievska B, Kirik D, Kokaia M. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther. 2007;15:1106–13.

    Article  CAS  PubMed  Google Scholar 

  16. Nikitidou Ledri L, Melin E, Christiansen SH, Gøtzsche CR, Cifra A, Woldbye DPD, et al. Translational approach for gene therapy in epilepsy: Model system and unilateral overexpression of neuropeptide Y and Y2 receptors. Neurobiol Dis. 2016;86:52–61.

    Article  CAS  Google Scholar 

  17. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 2003;60:69–73.

    Article  CAS  PubMed  Google Scholar 

  18. Lindvall O, Wahlberg LU. Encapsulated cell biodelivery of GDNF: A novel clinical strategy for neuroprotection and neuroregeneration in Parkinson’s disease? Exp Neurol. 2008;209:82–8.

    Article  CAS  PubMed  Google Scholar 

  19. Falcicchia C, Paolone G, Emerich DF, Lovisari F, Bell WJ, Fradet T, et al. Seizure-suppressant and neuroprotective effects of encapsulated BDNF-producing cells in a rat model of temporal lobe epilepsy. Mol Ther Methods Clin Dev. 2018;9:211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med. 2016;6:a022699.

    Article  PubMed Central  Google Scholar 

  21. Rocha SM, Cristovão AC, Campos FL, Fonseca CP, Baltazar G. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis. 2012;47:407–15.

    Article  CAS  PubMed  Google Scholar 

  22. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 2015;78:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimizu F, Sano Y, Saito K, Abe MA, Maeda T, Haruki H, et al. Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. Neurochem Res. 2012;37:401–9.

    Article  CAS  PubMed  Google Scholar 

  24. Pozas E, Ibáñez CF. GDNF and GFRα1 promote differentiation and tangential migration of cortical GABAergic neurons. Neuron. 2005;45:701–13.

    Article  CAS  PubMed  Google Scholar 

  25. Paratcha G, Ibáñez CF, Ledda F. GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci. 2006;31:505–14.

    Article  CAS  PubMed  Google Scholar 

  26. Perrinjaquet M, Sjostrand D, Moliner A, Zechel S, Lamballe F, Maina F, et al. MET signaling in GABAergic neuronal precursors of the medial ganglionic eminence restricts GDNF activity in cells that express GFR 1 and a new transmembrane receptor partner. J Cell Sci. 2011;124:2797–805.

    Article  CAS  PubMed  Google Scholar 

  27. Bespalov MM, Sidorova YA, Tumova S, Ahonen-Bishopp A, Magalhães AC, Kulesskiy E, et al. Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol. 2011;192:153–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Canty AJ, Dietze J, Harvey M, Enomoto H, Milbrandt J, Ibanez CF. Regionalized loss of parvalbumin interneurons in the cerebral cortex of mice with deficits in GFR 1 signaling. J Neurosci. 2009;29:10695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ledda F, Paratcha G, Sandoval-Guzmán T, Ibáñez CF. GDNF and GFRalpha1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nat Neurosci. 2007;10:293–300.

    Article  CAS  PubMed  Google Scholar 

  30. Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EMK, Lindvall O, et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science. 2014;346:237–41.

    Article  CAS  PubMed  Google Scholar 

  31. Marks C, Belluscio L, Ibáñez CF. Critical role of GFRα1 in the development and function of the main olfactory system. J Neurosci. 2012;32:17306–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fjord-Larsen L, Kusk P, Emerich DF, Thanos C, Torp M, Bintz B, et al. Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer. Gene Ther. 2012;19:1010–7.

    Article  CAS  PubMed  Google Scholar 

  33. Fjord-Larsen L, Kusk P, Tornøe J, Juliusson B, Torp M, Bjarkam CR, et al. Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the göttingen minipig basal forebrain. Mol Ther. 2010;18:2164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Racine RJ. Modification of seizure activity by electrical stimulation: I. after-discharge threshold. Electroencephalogr Clin Neurophysiol. 1972;32:269–79.

    Article  CAS  PubMed  Google Scholar 

  35. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open source platform for biological image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Susanne Jonsson and Nora Pernaa for performing the immunohistochemistry.

Funding

This work received financial support by the European Commission, FP7-PEOPLE-2011-IAPP, project 285827.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Kokaia.

Ethics declarations

Conflict of interest

LW is the scientific founder of NsGene A/S, and an employee of the company with minor share ownership. The remaining authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanobashvili, A., Melin, E., Emerich, D. et al. Unilateral ex vivo gene therapy by GDNF in epileptic rats. Gene Ther 26, 65–74 (2019). https://doi.org/10.1038/s41434-018-0050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0050-7

Search

Quick links