Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

In vivo selection with lentiviral expression of Bcl2T69A/S70A/S87A mutant in hematopoietic stem cell-transplanted mice

Abstract

Current in vivo selections for hematopoietic stem cell (HSC)-based gene therapy are drug dependent and not without risk of cytotoxicity or tumorigenesis. We developed a new in vivo selection system with the non-phosphorylatable Bcl2 mutant Bcl2T69A/S70A/S87A (Bcl2AAA), which makes in vivo selection drug independent and without risk of cytotoxicity or tumorigenesis. We demonstrated in HSC-transplanted mice that Bcl2AAA facilitated efficient in vivo selection in the absence of any exogenously applied drugs under both myeloablative and non-myeloablative conditioning. In mice transplanted with retrovirally transduced sca-1-positive bone marrow cells, the marked cell level increased from 26.38% of input transduced cells to 92.61 ± 0.95% of peripheral blood cells for myeloablative transplantation or to 37.82 ± 6.35% for non-myeloablative transplantation 6 months after transplantation. Bcl2AAA did not induce tumorigenesis and does not influence hematopoiesis and the function of the reconstituted blood system. However, the high-level constitutive expression of Bcl2AAA mediated by retroviral vector induced exhaustion of the marked cells after tertiary transplantation. Fortunately, low-level constitutive expression of Bcl2AAA driven by an internal promoter in lentiviral vector could both maintain the marked cell level (24.13 ± 5.27%, 27.17 ± 5.51%, 24.33 ± 5.08%, and 22.07 ± 4.44% for primary, secondary, tertiary, and quaternary recipients) and avoid the exhaustion of the marked cells even in quaternary recipients. Importantly, the low-level constitutive expression of Bcl2AAA did not induce tumorigenesis. Thus, the in vivo selection employing the low-level constitutive expression of Bcl2AAA provides a general platform which is relevant for widespread applications of gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Neff T, Horn PA, Valli VE, Gown AM, Wardwell S, Wood BL, et al. Pharmacologically regulated in vivo selection in a large animal. Blood. 2002;100:2026–31.

    Article  CAS  Google Scholar 

  2. Persons DA, Allay JA, Bonifacino A, Lu T, Agricola B, Metzger ME, et al. Transient in vivo selection of transduced peripheral blood cells using antifolate drug selection in rhesus macaques that received transplants with hematopoietic stem cells expressing dihydrofolate reductase vectors. Blood. 2004;103:796–803.

    Article  CAS  Google Scholar 

  3. Licht T, Haskins M, Henthorn P, Kleiman SE, Bodine DM, Whitwam T, et al. Drug selection with paclitaxel restores expression of linked IL-2 receptor gamma-chain and multidrug resistance (MDR1) transgenes in canine bone marrow. Proc Natl Acad Sci USA. 2002;99:3123–8.

    Article  CAS  Google Scholar 

  4. Zhang XB, Beard BC, Trobridge GD, Wood BL, Sale GE, Sud R, et al. High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector. J Clin Invest. 2008;118:1502–10.

    Article  CAS  Google Scholar 

  5. Domen J, Cheshier SH, Weissman IL. The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of BCL-2 increases both their number and repopulation potential. J Exp Med. 2000;191:253–64.

    Article  CAS  Google Scholar 

  6. Innes KM, Szilvassy SJ, Davidson HE, Gibson L, Adams JM, Cory S. Retroviral transduction of enriched hematopoietic stem cells allows lifelong Bcl-2 expression in multiple lineages but does not perturb hematopoiesis. Exp Hematol. 1999;27:75–87.

    Article  CAS  Google Scholar 

  7. McDonnell TJ, Korsmeyer SJ. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature. 1991;349:254–6.

    Article  CAS  Google Scholar 

  8. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335:440–2.

    Article  CAS  Google Scholar 

  9. Kirkin V, Joos S, Zörnig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644:229–49.

    Article  CAS  Google Scholar 

  10. Kuo ML, Shiah SG, Wang CJ, Chuang SE. Suppression of apoptosis by Bcl-2 to enhance benzene metabolites-induced oxidative DNA damage and mutagenesis: a possible mechanism of carcinogenesis. Mol Pharmacol. 1999;55:894–901.

    CAS  PubMed  Google Scholar 

  11. Youn CK, Cho HJ, Kim SH, Kim HB, Kim MH, Chang IY, et al. Bcl-2 expression suppresses mismatch repair activity through inhibition of E2F transcriptional activity. Nat Cell Biol. 2005;7:137–47.

    Article  CAS  Google Scholar 

  12. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol. 1999;19:8469–78.

    Article  CAS  Google Scholar 

  13. May WS, Tyler PG, Ito T, Armstrong DK, Qatsha KA, Davidson NE. Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of Bcl2a in association with suppression of apoptosis. J Biol Chem. 1994;269:26865–70.

    CAS  PubMed  Google Scholar 

  14. Ito T, Deng X, Carr BK, May WS. Bcl2 phosphorylation required for anti-apoptosis function. J Biol Chem. 1997;272:11671–3.

    Article  CAS  Google Scholar 

  15. Deng X, Gao F, Flagg T, May WS Jr. Mono- and multisite phosphorylation enhances Bcl2’s antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci USA. 2004;101:153–8.

    Article  CAS  Google Scholar 

  16. Hou Y, Gao F, Wang Q, Zhao J, Flagg T, Zhang Y, et al. Bcl2 impedes DNA mismatch repair by directly regulating the hMSH2-hMSH6 heterodimeric complex. J Biol Chem. 2007;282:9279–87.

    Article  CAS  Google Scholar 

  17. Wang Q, Gao F, May WS, Zhang Y, Flagg T, Deng X. Bcl2 negatively regulates DNA double-strand-break repair through a nonhomologous end-joining pathway. Mol Cell. 2008;29:488–98.

    Article  CAS  Google Scholar 

  18. Deng X, Gao F, May WS Jr. Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood. 2003;102:3179–85.

    Article  CAS  Google Scholar 

  19. Deng X, Gao F, May WS Jr. Protein phosphatase 2A inactivates Bcl2’s antiapoptotic function by dephosphorylation and up-regulation of Bcl2-p53 binding. Blood. 2009;113:422–8.

    Article  CAS  Google Scholar 

  20. Deng X, Gao F, Flagg T, Anderson J, May WS. Bcl2’s flexible loop domain regulates p53 binding and survival. Mol Cell Biol. 2006;26:4421–34.

    Article  CAS  Google Scholar 

  21. Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ. A role for proapoptotic BID in the DNA-damage response. Cell. 2005;122:579–91.

    Article  CAS  Google Scholar 

  22. Zinkel SS, Ong CC, Ferguson DO, Iwasaki H, Akashi K, Bronson RT, et al. Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev. 2003;17:229–39.

    Article  CAS  Google Scholar 

  23. Jin Z, Gao F, Flagg T, Deng X. Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation. J Biol Chem. 2004;279:40209–19.

    Article  CAS  Google Scholar 

  24. Wang YY, Deng X, Xu L, Gao F, Flagg T, May WS. Bcl2 enhances induced hematopoietic differentiation of murine embryonic stem cells. Exp Hematol. 2008;36:128–39.

    Article  Google Scholar 

  25. Zhou S, Ma Z, Lu T, Janke L, Gray JT, Sorrentino BP. Mouse transplant models for evaluating the oncogenic risk of a self-inactivating XSCID lentiviral vector. PLoS One. 2013;8:e62333.

    Article  CAS  Google Scholar 

  26. Allay JA, Persons DA, Galipeau J, Riberdy JM, Ashmun RA, Blakley RL, et al. In vivo selection of retrovirally transduced hematopoietic stem cells. Nat Med. 1998;4:1136–43.

    Article  CAS  Google Scholar 

  27. Randall TD, Weissman IL. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood. 1997;89:3596–606.

    CAS  PubMed  Google Scholar 

  28. Bryder D, Ramsfjell V, Dybedal I, Theilgaard-Mönch K, Högerkorp CM, Adolfsson J, et al. Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med. 2001;194:941–52.

    Article  CAS  Google Scholar 

  29. Klug CA, Cheshier S, Weissman IL. Inactivation of a GFP retrovirus occurs at multiple levels in long-term repopulating stem cells and their differentiated progeny. Blood. 2000;96:894–901.

    CAS  PubMed  Google Scholar 

  30. Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol. 2000;20:7419–26.

    Article  CAS  Google Scholar 

  31. Swindle CS, Kim HG, Klug CA. Mutation of CpGs in the murine stem cell virus retroviral vector long terminal repeat represses silencing in embryonic stem cells. J Biol Chem. 2004;279:34–41.

    Article  CAS  Google Scholar 

  32. Wojciechowski S, Tripathi P, Bourdeau T, Acero L, Grimes HL, Katz JD, et al. Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis. J Exp Med. 2007;204:1665–75.

    Article  CAS  Google Scholar 

  33. Choi JK, Hoang N, Vilardi AM, Conrad P, Stephen G, Emerson SG, Gewirtz AM, et al. Hybrid HIV/MSCV LTR enhances transgene expression of lentiviral vectors in human CD34(+) hematopoietic cells. Stem Cells. 2001;19:236–46.

    Article  CAS  Google Scholar 

  34. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT. Stem cell repopulation efficiency but not pool size is governed byp27(kip1). Nat Med. 2000;6:1235–40.

    Article  CAS  Google Scholar 

  35. Hawley RG, Fong AZ, Burns BF, Hawley TS. Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus. J Exp Med. 1992;176:1149–63.

    Article  CAS  Google Scholar 

  36. Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM, Tomasson MH. c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood. 2005;106:2452–61.

    Article  CAS  Google Scholar 

  37. Guidotti JE, Mallet VO, Mitchell C, Fabre M, Schoevaert D, Opolon P, et al. Selection of in vivo retrovirally transduced hepatocytes leads to efficient and predictable mouse liver repopulation. FASEB J. 2001;15:1849–51.

    Article  CAS  Google Scholar 

  38. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood. 1998;92:3780–92.

    CAS  PubMed  Google Scholar 

  39. Wang YY, Li Z, Jiao D, Zhang Z, Shao X, Yuan J, et al. RNA interference reveals a requirement for both p18INK4c and p27Kip1 in B lymphopoiesis. J Mol Cell Biol. 2010;2:209–16.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z.X. Hu for taking care of the animals. This work was supported by the start-up research fund from Hangzhou Dianzi University (KYS195612020) (to Y.-Y.W.) and the National Natural Science Foundation of China (30960443) (to Y.-Y. W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Yi Wang or Yong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YY., Ma, S., Chen, Q. et al. In vivo selection with lentiviral expression of Bcl2T69A/S70A/S87A mutant in hematopoietic stem cell-transplanted mice. Gene Ther 25, 220–233 (2018). https://doi.org/10.1038/s41434-018-0008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0008-9

This article is cited by

Search

Quick links