Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Evaluation of the Glypican 3 promoter for transcriptional targeting of hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) is a major health problem as evidenced by its increasing incidence and high morbidity and mortality rates. Most patients with HCC have underlying liver disease and dysfunction which limits the current therapeutic options. Treatments that spare the liver and destroy the HCC are needed. Targeting transcriptional differences between HCC and liver cells may provide this therapeutic window. In this study, we examine the potential of the Glypican 3 (GPC3) promoter as a targeting strategy. GPC3 is an oncofetal protein belonging to the proteoglycan family which is normally only expressed during fetal development. However, in HCC, the expression of this protein is reactivated. Here, we show that GPC3 is expressed primarily in HCC and not in normal liver lines. We show that the GPC3 promoter can be used to drive expression of significantly more luciferase and eYFP in HCC cell lines compared to normal liver cells. Further, we show that vectors containing cytosine deaminase (CD) under GPC3 promotor control induced significantly more killing of HCC cell lines after treatment with 5-FC compared to normal liver cell lines. These data suggest that transcriptionally targeted delivery of transgene in HCC cells can be achieved using the GPC3 promoter and this targeting strategy produces limited toxicity to normal liver cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  Google Scholar 

  2. Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. 2012;62(2):118–28.

    Article  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7-30.

    Article  Google Scholar 

  4. EAFTSOT Liver. Cancer EOFRATO. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43.

    Article  Google Scholar 

  5. Waghray A, Murali AR, Menon KN. Hepatocellular carcinoma: from diagnosis to treatment. World J Hepatol. 2015;7(8):1020–9.

    Article  Google Scholar 

  6. Dhungel B, Jayachandran A, Layton CJ, Steel JC. Seek and destroy: targeted adeno-associated viruses for gene delivery to hepatocellular carcinoma. Drug Deliv. 2017;24(1):289–99.

    Article  CAS  Google Scholar 

  7. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162–9.

    Article  CAS  Google Scholar 

  8. Robson T, Hirst DG. Transcriptional targeting in cancer gene therapy. J Biomed Biotechnol. 2003;2003(2):110–37.

    Article  Google Scholar 

  9. Lee SM, Kim-Ha J, Choi WY, Lee J, Kim D, Choi E, et al. Interplay of genetic and epigenetic alterations in hepatocellular carcinoma. Epigenomics. 2016;8(7):993–1005.

    Article  CAS  Google Scholar 

  10. Attallah AM, El-Far M, Malak CA, Omran MM, Shiha GE, Farid K, et al. HCC-DETECT: a combination of nuclear, cytoplasmic, and oncofetal proteins as biomarkers for hepatocellular carcinoma. Tumour Biol. 2015;36(10):7667–74.

    Article  CAS  Google Scholar 

  11. Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Haberle V, et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–70.

    Article  CAS  Google Scholar 

  12. Haruyama Y, Kataoka H. Glypican-3 is a prognostic factor and an immunotherapeutic target in hepatocellular carcinoma. World J Gastroenterol. 2016;22(1):275–83.

    Article  CAS  Google Scholar 

  13. Shirakawa H, Kuronuma T, Nishimura Y, Hasebe T, Nakano M, Gotohda N, et al. Glypican-3 is a useful diagnostic marker for a component of hepatocellular carcinoma in human liver cancer. Int J Oncol. 2009;34(3):649–56.

    CAS  PubMed  Google Scholar 

  14. Zhu AX, Gold PJ, El-Khoueiry AB, Abrams TA, Morikawa H, Ohishi N, et al. First-in-man phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2013;19(4):920–8.

    Article  CAS  Google Scholar 

  15. Ikeda M, Ohkawa S, Okusaka T, Mitsunaga S, Kobayashi S, Morizane C, et al. Japanese phase I study of GC33, a humanized antibody against glypican-3 for advanced hepatocellular carcinoma. Cancer Sci. 2014;105(4):455–62.

    Article  CAS  Google Scholar 

  16. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

    Article  Google Scholar 

  17. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  Google Scholar 

  18. Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther. 2014;2:27.

    Article  Google Scholar 

  19. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55.

    Article  Google Scholar 

  20. Sia KC, Huynh H, Chung AY, Ooi LL, Lim KH, Hui KM, et al. Preclinical evaluation of transcriptional targeting strategy for human hepatocellular carcinoma in an orthotopic xenograft mouse model. Mol Cancer Ther. 2013;12(8):1651–64.

    Article  CAS  Google Scholar 

  21. Zhang Y, Ma H, Zhang J, Liu S, Liu Y, Zheng D. AAV-mediated TRAIL gene expression driven by hTERT promoter suppressed human hepatocellular carcinoma growth in mice. Life Sci. 2008;82(23-24):1154–61.

    Article  CAS  Google Scholar 

  22. Jiang Z, Lohse CM, Chu PG, Wu CL, Woda BA, Rock KL, et al. Oncofetal protein IMP3: a novel molecular marker that predicts metastasis of papillary and chromophobe renal cell carcinomas. Cancer. 2008;112(12):2676–82.

    Article  Google Scholar 

  23. Coggin JH, Barsoum AL, Rohrer JW, Thurnher M, Zeis M. Contemporary definitions of tumor specific antigens, immunogens and markers as related to the adaptive responses of the cancer-bearing host. Anticancer Res. 2005;25(3c):2345–55.

    CAS  PubMed  Google Scholar 

  24. Baig JA, Alam JM, Mahmood SR, Baig M, Shaheen R, Sultana I, et al. Hepatocellular carcinoma (HCC) and diagnostic significance of A-fetoprotein (AFP). J Ayub Med Coll Abbottabad. 2009;21(1):72–5.

    PubMed  Google Scholar 

  25. Filmus J, Capurro M. Glypican-3: a marker and a therapeutic target in hepatocellular carcinoma. FEBS J. 2013;280(10):2471–6.

    Article  CAS  Google Scholar 

  26. Tyner AL, Godbout R, Compton RS, Tilghman SM. The ontogeny of alpha-fetoprotein gene expression in the mouse gastrointestinal tract. J Cell Biol. 1990;110(4):915–27.

    Article  CAS  Google Scholar 

  27. Su H, Chang JC, Xu SM, Kan YW. Selective killing of AFP-positive hepatocellular carcinoma cells by adeno-associated virus transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther. 1996;7(4):463–70.

    Article  CAS  Google Scholar 

  28. Kunitomi M, Takayama E, Suzuki S, Yasuda T, Tsutsui K, Nagaike K, et al. Selective inhibition of hepatoma cells using diphtheria toxin A under the control of the promoter/enhancer region of the human alpha-fetoprotein gene. Jpn J Cancer Res. 2000;91(3):343–50.

    Article  CAS  Google Scholar 

  29. Ido A, Uto H, Moriuchi A, Nagata K, Onaga Y, Onaga M, et al. Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter. Cancer Res. 2001;61(7):3016–21.

    CAS  PubMed  Google Scholar 

  30. Kanai F. Transcriptional targeted gene therapy for hepatocellular carcinoma by adenovirus vector. Mol Biotechnol. 2001;18(3):243–50.

    Article  CAS  Google Scholar 

  31. Lai YH, Lin CC, Chen SH, Tai CK. Tumor-specific suicide gene therapy for hepatocellular carcinoma by transcriptionally targeted retroviral replicating vectors. Gene Ther. 2015;22(2):155–62.

    Article  CAS  Google Scholar 

  32. Lee BK, Bhinge AA, Battenhouse A, McDaniell RM, Liu Z, Song L, et al. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res. 2012;22(1):9–24.

    Article  CAS  Google Scholar 

  33. Lamparter D, Marbach D, Rueedi R, Bergmann S, Kutalik Z. Genome-wide association between transcription factor expression and chromatin accessibility reveals regulators of chromatin accessibility. PLoS Comput Biol. 2017;13(1):e1005311.

    Article  Google Scholar 

  34. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature. 2012;489(7414):75–82.

    Article  CAS  Google Scholar 

  35. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582–7.

    Article  CAS  Google Scholar 

  36. Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, et al. PaxDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteom. 2012;11(8):492–500.

    Article  CAS  Google Scholar 

  37. Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, et al. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc. 2009;4(5):698–705.

    Article  CAS  Google Scholar 

  38. Kolker E, Higdon R, Haynes W, Welch D, Broomall W, Lancet D, et al. MOPED: Model Organism Protein Expression Database. Nucleic Acids Res. 2012;40 Database issue:D1093–9.

    Article  Google Scholar 

  39. van den Ent F, Löwe J. RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods. 2006;67(1):67–74.

    Article  Google Scholar 

  40. Ikeda M, Sugiyama K, Mizutani T, Tanaka T, Tanaka K, Sekihara H, et al. Human hepatocyte clonal cell lines that support persistent replication of hepatitis C virus. Virus Res. 1998;56(2):157–67.

    Article  CAS  Google Scholar 

  41. Jayachandran A, Lo PH, Chueh AC, Prithviraj P, Molania R, Davalos-Salas M, et al. Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells. BMC Cancer. 2016;16:134.

    Article  Google Scholar 

  42. Prithviraj P, Anaka M, McKeown SJ, Permezel M, Walkiewicz M, Cebon J, et al. Pregnancy associated plasma protein-A links pregnancy and melanoma progression by promoting cellular migration and invasion. Oncotarget. 2015;6(18):15953–65.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gallipoli Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Steel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhungel, B., Andrzejewski, S., Jayachandran, A. et al. Evaluation of the Glypican 3 promoter for transcriptional targeting of hepatocellular carcinoma. Gene Ther 25, 115–128 (2018). https://doi.org/10.1038/s41434-018-0002-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0002-2

This article is cited by

Search

Quick links