Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Relationship between genotype, phenotype, and refractive status in patients of inherited retinal degeneration

Abstract

Background

To elucidate the relationship between inherited retinal disease, visual acuity and refractive error development in Asian patients.

Subjects

Five hundred phakic eyes with refractive data were analysed in this retrospective cohort. Diseases were categorized by clinical phenotypes, and the prevalent genotypes identified in the Taiwan Inherited Retinal Degeneration Project were analysed. Consecutive surveys in Taiwan have provided the rates of myopia in the general population.

Results

No differences were observed among the disease phenotypes with respect to myopia (P = 0.098) and high myopia rates (P = 0.037). The comparison of refractive error between retinitis pigmentosa and diseases mainly affecting the central retina showed no difference, and the refraction analyses in diseases of different onset ages yielded no significance. Moreover, there was no difference in the myopia rate between the diseases and general population. Among the genotypes, a higher spherical equivalent was seen in RPGR and PROM1-related patients and emmetropic trends were observed in patients with CRB1 and PRPF31 mutations. Furthermore, significantly poorer visual acuity was found in ABCA4, CRB1 and PROM1-related patients, and more preserved visual acuity was seen in patients with EYS, USH2A, and RDH12 mutations.

Conclusions

No significant differences were observed in visual acuity, refractive state and myopia rate between patients with inherited retinal disease and the general population, and different subtypes of inherited retinal disease shared similar refractive state, except for higher cylindrical dioptres found in patients with Leber’s congenital amaurosis. The heterogeneity of disease-causing genes in Asian patients may lead to variable refractive state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Refractive error and visual acuity distribution among disease subtypes.
Fig. 2: Myopia rates and high myopia rates of different age groups among disease subtypes and the general population.
Fig. 3: Refractive error distribution of both eyes (N = 420) among the nine major genotypes after age adjustment using the ANCOVA test.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are not publicly accessible due to privacy concerns and can be available from the corresponding author upon reasonable request. The data are stored in a controlled access data repository at National Taiwan University Hospital.

References

  1. Troilo D, Smith EL 3rd, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, et al. IMI - report on experimental models of emmetropization and myopia. Invest Ophthalmol Vis Sci. 2019;60:M31–M88. https://doi.org/10.1167/iovs.18-25967.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goss DA, Wickham MG. Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization. A literature review. Doc Ophthalmol. 1995;90:341–75. https://doi.org/10.1007/BF01268122.

    Article  CAS  PubMed  Google Scholar 

  3. Flitcroft DI. Emmetropization and the aetiology of refractive errors. Eye (Lond). 2014;28:169–79. https://doi.org/10.1038/eye.2013.276.

    Article  CAS  PubMed  Google Scholar 

  4. Smith EL 3rd, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vis Res. 2009;49:2386–92. https://doi.org/10.1016/j.visres.2009.07.011.

    Article  PubMed  Google Scholar 

  5. Smith EL 3rd, Hung LF, Arumugam B. Visual regulation of refractive development: insights from animal studies. Eye (Lond). 2014;28:180–8. https://doi.org/10.1038/eye.2013.277.

    Article  PubMed  Google Scholar 

  6. Flitcroft DI, Adams GG, Robson AG, Holder GE. Retinal dysfunction and refractive errors: an electrophysiological study of children. Br J Ophthalmol. 2005;89:484–8. https://doi.org/10.1136/bjo.2004.045328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sieving PA, Fishman GA. Refractive errors of retinitis pigmentosa patients. Br J Ophthalmol. 1978;62:163–7. https://doi.org/10.1136/bjo.62.3.163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zito I, Allen LE, Patel RJ, Meindl A, Bradshaw K, Yates JR, et al. Mutations in the CACNA1F and NYX genes in British CSNBX families. Hum Mutat. 2003;21:169 https://doi.org/10.1002/humu.9106.

    Article  CAS  PubMed  Google Scholar 

  9. Doka DS, Fishman GA, Anderson RJ. Refractive errors in patients with fundus flavimaculatus. Br J Ophthalmol. 1982;66:227–9. https://doi.org/10.1136/bjo.66.4.227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner RS, Caputo AR, Nelson LB, Zanoni D. High hyperopia in Leber’s congenital amaurosis. Arch Ophthalmol. 1985;103:1507–9. https://doi.org/10.1001/archopht.1985.01050100083024.

    Article  CAS  PubMed  Google Scholar 

  11. Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat. 2004;23:306–17. https://doi.org/10.1002/humu.20010.

    Article  CAS  PubMed  Google Scholar 

  12. Thiadens AA, Phan TM, Zekveld-Vroon RC, Leroy BP, van den Born LI, Hoyng CB, et al. Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology. 2012;119:819–26. https://doi.org/10.1016/j.ophtha.2011.10.011.

    Article  PubMed  Google Scholar 

  13. Tedja MS, Haarman AEG, Meester-Smoor MA, Kaprio J, Mackey DA, Guggenheim JA, et al. IMI - myopia genetics report. Invest Ophthalmol Vis Sci. 2019;60:M89–M105. https://doi.org/10.1167/iovs.18-25965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verhoeven VJ, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Höhn R, et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet. 2013;45:314–8. https://doi.org/10.1038/ng.2554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res. 2018;62:134–49. https://doi.org/10.1016/j.preteyeres.2017.09.004.

    Article  PubMed  Google Scholar 

  16. Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singap. 2004;33:27–33.

    Article  CAS  PubMed  Google Scholar 

  17. Ding BY, Shih YF, Lin LLK, Hsiao CK, Wang IJ. Myopia among schoolchildren in East Asia and Singapore. Surv Ophthalmol. 2017;62:677–97. https://doi.org/10.1016/j.survophthal.2017.03.006.

    Article  PubMed  Google Scholar 

  18. Chen TC, Huang DS, Lin CW, Yang CH, Yang CM, Wang VY, et al. Genetic characteristics and epidemiology of inherited retinal degeneration in Taiwan. NPJ Genom Med. 2021;6:16 https://doi.org/10.1038/s41525-021-00180-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Day AC, Donachie PH, Sparrow JM, Johnston RL, Royal College of Ophthalmologists’ National Ophthalmology D. The Royal College of Ophthalmologists’ National Ophthalmology database study of cataract surgery: report 2, relationships of axial length with ocular copathology, preoperative visual acuity, and posterior capsule rupture. Eye (Lond). 2015;29:1528–37. https://doi.org/10.1038/eye.2015.198.

    Article  CAS  PubMed  Google Scholar 

  20. Chen CH, Yang JH, Chiang CWK, Hsiung CN, Wu PE, Chang LC, et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet. 2016;25:5321–31. https://doi.org/10.1093/hmg/ddw346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shih YF, Chiang TH, Lin LL. Lens thickness changes among schoolchildren in Taiwan. Invest Ophthalmol Vis Sci. 2009;50:2637–44. https://doi.org/10.1167/iovs.08-3090.

    Article  PubMed  Google Scholar 

  22. Tsai TH, Liu YL, Ma IH, Su CC, Lin CW, Lin LL, et al. Evolution of the prevalence of myopia among Taiwanese schoolchildren: a review of survey data from 1983 through 2017. Ophthalmology. 2021;128:290–301. https://doi.org/10.1016/j.ophtha.2020.07.017.

    Article  PubMed  Google Scholar 

  23. Group C. Myopia stabilization and associated factors among participants in the correction of myopia evaluation trial (COMET). Invest Ophthalmol Vis Sci. 2013;54:7871–84. https://doi.org/10.1167/iovs.13-12403.

    Article  Google Scholar 

  24. Kumaran N, Pennesi ME, Yang P, Trzupek KM, Schlechter C, Moore AT, et al. Leber congenital amaurosis/early-onset severe retinal dystrophy overview. In: Adam MP, Everman DB, Mirzaa GM, et al, eds GeneReviews((R)). University of Washington, Seattle, Seattle (WA); 1993.

  25. Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101:1147–54. https://doi.org/10.1136/bjophthalmol-2016-309975.

    Article  PubMed  Google Scholar 

  26. Heher KL, Traboulsi EI, Maumenee IH. The natural history of Leber’s congenital amaurosis. Age-related findings in 35 patients. Ophthalmology. 1992;99:241–5. https://doi.org/10.1016/s0161-6420(92)31985-2.

    Article  CAS  PubMed  Google Scholar 

  27. Read SA, Collins MJ, Carney LG. A review of astigmatism and its possible genesis. Clin Exp Optom. 2007;90:5–19. https://doi.org/10.1111/j.1444-0938.2007.00112.x.

    Article  PubMed  Google Scholar 

  28. Mukhtar S, Ambati BK. Pediatric keratoconus: a review of the literature. Int Ophthalmol. 2018;38:2257–66. https://doi.org/10.1007/s10792-017-0699-8.

    Article  PubMed  Google Scholar 

  29. Zemba M, Zaharia AC, Dumitrescu OM. Association of retinitis pigmentosa and advanced keratoconus in siblings. Rom J Ophthalmol. 2020;64:313–21.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Elder MJ. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J Pediatr Ophthalmol Strabismus. 1994;31:38–40. https://doi.org/10.3928/0191-3913-19940101-08.

    Article  CAS  PubMed  Google Scholar 

  31. Hendriks M, Verhoeven VJM, Buitendijk GHS, Polling JR, Meester-Smoor MA, Hofman A, et al. Development of refractive errors-what can we learn from inherited retinal dystrophies? Am J Ophthalmol. 2017;182:81–89. https://doi.org/10.1016/j.ajo.2017.07.008.

    Article  PubMed  Google Scholar 

  32. Talib M, van Schooneveld MJ, van Genderen MM, Wijnholds J, Florijn RJ, Ten Brink JB, et al. Genotypic and phenotypic characteristics of CRB1-associated retinal dystrophies: a long-term follow-up study. Ophthalmology. 2017;124:884–95. https://doi.org/10.1016/j.ophtha.2017.01.047.

    Article  PubMed  Google Scholar 

  33. McMahon TT, Kim LS, Fishman GA, Stone EM, Zhao XC, Yee RW, et al. CRB1 gene mutations are associated with keratoconus in patients with leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2009;50:3185–7. https://doi.org/10.1167/iovs.08-2886.

    Article  PubMed  Google Scholar 

  34. Catucci I, Peterlongo P, Ciceri S, Colombo M, Pasquini G, Barile M, et al. Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet Med. 2015;17:271–8. https://doi.org/10.1038/gim.2014.13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wan-Chen Tsai (WT), Yao-Lin Liu (YL), Tzu-Hsun Tsai (TT), Ying-Ju Lai (YL), Chang-Hao Yang (C-HY), Chung-May Yang (C-MY), Tzyy-Chang Ho (TH), Chang-Ping Lin (C-PL), Yi-Ting Hsieh (YH), Po-Ting Yeh (PY), Chao-Wen Lin (C-WL), Tso-Ting Lai (TL), Pei-Lung Chen (PC), and Ta-Ching Chen (TC). Research Design: WT, TC. Data acquisition and/or research execution: WT, YL, TT, C-HY, C-MY, TH, C-PL, YH, PY, C-WL, TL, PC, TC. Data analysis and/or interpretation: WT, YL, TT, YL, TC. Manuscript preparation: WT, YL, TT, YL, TC.

Corresponding author

Correspondence to Ta-Ching Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, WC., Liu, YL., Tsai, TH. et al. Relationship between genotype, phenotype, and refractive status in patients of inherited retinal degeneration. Eye (2024). https://doi.org/10.1038/s41433-024-03283-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41433-024-03283-y

Search

Quick links