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Ocular biomarkers: useful incidental findings by deep learning 
algorithms in fundus photographs
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BACKGROUND/OBJECTIVES: Artificial intelligence can assist with ocular image analysis for screening and diagnosis, but it is not 
yet capable of autonomous full-spectrum screening. Hypothetically, false-positive results may have unrealized screening potential 
arising from signals persisting despite training and/or ambiguous signals such as from biomarker overlap or high comorbidity. The 
study aimed to explore the potential to detect clinically useful incidental ocular biomarkers by screening fundus photographs of 
hypertensive adults using diabetic deep learning algorithms.
SUBJECTS/METHODS: Patients referred for treatment-resistant hypertension were imaged at a hospital unit in Perth, Australia, 
between 2016 and 2022. The same 45° colour fundus photograph selected for each of the 433 participants imaged was processed 
by three deep learning algorithms. Two expert retinal specialists graded all false-positive results for diabetic retinopathy in non- 
diabetic participants.
RESULTS: Of the 29 non-diabetic participants misclassified as positive for diabetic retinopathy, 28 (97%) had clinically useful 
retinal biomarkers. The models designed to screen for fewer diseases captured more incidental disease. All three algorithms 
showed a positive correlation between severity of hypertensive retinopathy and misclassified diabetic retinopathy.
CONCLUSIONS: The results suggest that diabetic deep learning models may be responsive to hypertensive and other clinically 
useful retinal biomarkers within an at-risk, hypertensive cohort. Observing that models trained for fewer diseases captured more 
incidental pathology increases confidence in signalling hypotheses aligned with using self-supervised learning to develop 
autonomous comprehensive screening. Meanwhile, non-referable and false-positive outputs of other deep learning screening 
models could be explored for immediate clinical use in other populations.

Eye; https://doi.org/10.1038/s41433-024-03085-2

INTRODUCTION
Screening with deep learning
Since 2018 when the first autonomous machine learning model 
was approved to detect diabetic retinopathy in fundus photo
graphs [1], deep learning algorithms have now expanded to assist 
diagnosis of macular degeneration [2] and glaucoma [3]. 
Regulatory approval is also pending for myopic retinopathy [4] 
and cardiovascular disease [5]. Deep learning algorithms can 
outperform human accuracy for the three targeted diseases: 
diabetic retinopathy/diabetic macular oedema [6, 7], macular 
degeneration [8], and glaucoma [9]. The technology is more 
accessible [10–13], 200 times faster [14, 15], and capable of sub- 
clinical detection [16–19], but the diseases screened are few and 
human experts are still required for complete retinal assessment.

The only clinically available systemic disease targeted by deep 
learning in fundus photographs remains diabetes mellitus despite 
expanding algorithm development to estimate age [20], refractive 

error [21], smoking status [22], body composition [23], renal 
function [23], glycated haemoglobin levels [24], anaemia [25], 
schizophrenia [26], neurodegenerative diseases [27, 28] as well as 
cardiovascular [22, 29, 30] and cerebrovascular health [31, 32]. 
Multi-target algorithms [33–35] and multimodality using scanning 
laser imaging and OCT technology [36] are also rapidly advancing, 
but realising autonomous comprehensive retinal screening on 
this trajectory is unlikely as the required training datasets for rare 
and novel diseases are lacking, and target-specific algorithms are 
not designed to detect clinically important incidental diseases 
noticed by human experts.

Applications in hypertensive and diabetic retinopathies
Retinal photography, the most effective screening strategy for 
diabetic retinopathy [37], shows the extent of progressive 
retinal vessel compromise and estimates the health of the other 
target organs; the heart, brain, and kidneys [38]. Similarly, the 
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extent of hypertensive retinal vascular remodelling estimates 
the health of the other target organs [39]. Unlike the manage
ment of diabetes mellitus, where glycated haemoglobin 
provides time-averaged blood glucose estimates, hypertension 
has no such time-averaged metric to compensate for the 
volatility of blood pressure. Thus, hypertensive ocular biomar
kers are key indicators for non-invasive management and offer 
preclinical detection, as arteriolar narrowing occurs prior to 
clinical hypertension [40].

More than twice as prevalent as diabetes mellitus, hypertension, 
defined as office blood pressure levels above 140 mmHg systolic, 
90 mmHg diastolic, or both [41] remains the leading modifiable risk 
factor for premature death worldwide [42], affecting 20% of the 
global adult population, with 46% undiagnosed and only 21% 
receiving effective treatment [43]. Interestingly, clinical standards of 
care call for ongoing screening and monitoring of diabetic retinas, 
whereas there are no such recommendations for hypertension 
beyond retinal screening at diagnosis [44].

Not only is hypertensive retinopathy the most common clinically 
significant incidental finding in diabetic screening [45], but 
hypertensive retinal features appear to dominate the pathologies 
misclassified by deep learning algorithms [45–59]. Despite explora
tion of vessel calibre changes [60] and small vessel segmentation 
using optical coherence tomography angiography (OCTA) [61, 62], 
difficulties remain differentiating some early biomarkers of diabetic 
and hypertensive retinopathies [63].

Hypothetically, shared retinal biomarkers and/or high rates of 
hypertension in diabetic training images [64] could trigger false- 
positive results for deep learning algorithms. Additionally, or 
alternatively, training deep learning pattern recognition/discrimi
nation for specific disease is not error-free and may result in 
anomalous data signals triggering misclassification of not only 
hypertensive retinopathy but also other clinically useful untar
geted disease. Deep learning pathways remain unknown, but the 
hypotheses suggest that the algorithms may be clinically useful 
beyond their intended targets.

The primary aim of this study was to explore the potential for 
detecting clinically useful incidental ocular biomarkers using 
diabetic deep learning algorithms to screen fundus photographs 
of hypertensive adults.

SUBJECTS AND METHODS
Research design
The study had a retrospective, observational design. Approval was 
obtained from the East Metro Health Service Ethics and Governance Unit 
to use images collected for EastMetro HREC RGS1040 - Retinal Imaging in 
Resistant Hypertension. The study adhered to the tenets of the Declaration 
of Helsinki for research involving human subjects, and all participants 
gave informed consent.

Participants
Participants were recruited from Dobney Hypertension Centre, a public 
hospital outpatient clinic in Western Australia specializing in resistant 
hypertension, defined as uncontrolled high blood pressure despite at 
least three antihypertensive medications including a diuretic [41]. All 
participants were confirmed to have hypertension at recruitment but not 
necessarily with resistant hypertension.

All patients attending Dobney Hypertension Centre between 18 
January 2016 and 31 March 2022 were invited to participate in the Retina 
Imaging in Resistant Hypertension study. Recruitment, data collection and 
processing have been described in detail previously [65, 66]. In brief, 
patients were referred from primary care for diagnostic workup and 
clinical management of difficult-to-control hypertension. Patients con
sented to participate in a systematic prospective analysis to explore the 
association between blood pressure at presentation and retinal imaging 
parameters. Baseline clinical data collected from the patients included 
medical history, medication history, serum pathology, extensive blood 
pressure testing, and specific assessments of hypertension-mediated 
organ damage (including retinal imaging).

The participation rate for all new and returning attendees was above 
90%. Of the 529 consented participants, 96 were excluded from the study 
for lack of imaging arising from technical issues or non-attendance.

Data collection
Image acquisition. Clinic staff collected 45° macula-centred, colour 
fundus photographs without mydriasis using a Canon CR-2 camera 
(Tokyo, Japan) along with OCT and OCTA imaging by Optovue Avanti XR 
(Fremont, California, USA). All images and data were de-identified before 
transfer to the Commonwealth Scientific and Industrial Research 
Organisation (CSIRO), Australia’s national science agency.

Image selection. For each participant, the most recent processable 
higher-quality image capturing both the optic nerve and macula was 
selected. Processability was determined by two or more algorithms 
successfully processing the image. Two of the algorithms output a graded 
image or deemed the image ungradable, while the third algorithm graded 
all images along with a quality scale and a reliability threshold. Where no 
image met the processability criteria, the participant was removed from 
further assessment. Where more than one image met the criteria, the 
image with the algorithm-determined higher degree of pathology was 
selected. The same 45° colour fundus photograph selected for each 
participant was processed by three deep learning algorithms.

Algorithms. Algorithm 1, DR Grader (Perth, Australia), was approved in 
2018 as a Class I medical device to detect only referable diabetic 
retinopathy, differentiating moderate and severe. Referable diabetic 
retinopathy is internationally recognised as more than mild diabetic 
retinopathy [67]. Verified on a data set of 193 images by two human 
experts for referable diabetic retinopathy, the algorithm identified 17 as 
positive including the two true positive cases, resulting in 100% capture of 
true positives and a positive predictive value of 12% [46].

Algorithm 2, RetCAD (Nijmegen, The Netherlands), was approved in 
2020 as a Class IIa medical device for simultaneous detection of diabetic 
retinopathy and macular degeneration. The algorithm not only quantified 
all diabetic retinopathy and macular degeneration results, but also graded 
fundus photograph quality and estimated vertical cup-to-disk ratio. For all 
images, Algorithm 2 produced a contrast-enhanced image along with 
separate precise heatmaps of bright and red lesions. In 2022, in a real- 
world tertiary hospital screening setting, the algorithm processed 7195 
images for referable diabetic retinopathy resulting in 90.5% sensitivity and 
97.1% specificity [68]. When mild diabetic retinopathy was included, 
sensitivity rose to 91.7% and specificity dropped to 90.9% [69].

Algorithm 3, Eyetelligence (Melbourne, Australia), was approved in 2019 
as a Class I medical device for three separate target diseases: diabetic 
retinopathy [47], macular degeneration [2], and glaucoma [70]. The 
algorithm categorised diabetic retinopathy into the four internationally 
recognised levels of diabetic retinopathy; mild, moderate, severe, and 
proliferative [67, 71], with a sensitivity of 92.5% and a specificity of 98.5% 
[47]. Algorithm 3 also output a diffuse heatmap for referable diabetic 
retinopathy results only.

Grading of known false-positive results. Within the images identified by 
one or more of the algorithms as positive for diabetic retinopathy, 29 
participants were verified as clinically non-diabetic, an absence of diabetic 
or pre-diabetic clinical diagnosis, and a confirmed glycated haemoglobin 
result below 5.7 mmol/L. The 29 misclassified non-diabetic images were 
graded by two highly qualified retinal specialists with extensive 
experience in both clinical practice and research at the Lion’s Eye 
Institute, Perth. Both assessors independently identified the ocular 
anomalies visible in the sample. Where diagnostic ambiguities arose, 
the final determination was made by reviewing additional images, the 
fellow eye, medical history, heatmaps, OCT, and OCTA scans. The types 
and relative frequencies of ocular anomalies found in the 29 misclassified 
images were then recorded as the primary outcome for each algorithm.

RESULTS
Sample derivation
Of the 433 participants imaged, 27 images (6%) were of insufficient 
quality for reliable assessment by two or more algorithms. Of the 
406 assessable images, 251 (62%) returned negative results for all 
target anomalies across all three algorithms.
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Of the 155 images returning positive results, 56 were positive for 
macular degeneration or glaucoma and 99 (63.9%) were flagged as 
positive for diabetic retinopathy. Of the 99 images, 14 (14%) were 
flagged by all three algorithms, 28 (28%) were flagged by two 
algorithms, and 57 (58%) were flagged by one algorithm.

Of the 99 participants with positive diabetic retinopathy results, 
48 had a diagnosis of diabetes mellitus or had glycated 
haemoglobin levels in the diabetic range, and 22 were pre- 
diabetic based on glycated haemoglobin testing. The remaining 29 
participants with positive diabetic retinopathy results (29% of the 
99 reported as positive for diabetic retinopathy and 7% of the 406 
assessable images) had no diabetic or glucose-control medication 
history and had glycated haemoglobin levels below 5.7 mmol/L.

Based on clinical evidence, these 29 participants were not at 
risk for diabetic retinopathy and their images were classified as 
false-positive results. Their ages ranged from 23 to 90 years (16 
males; mean age 63 ± 16 years).

Features of false-positive results
Table 1 shows the frequency and capture rates by algorithm for the 
features found by retinal experts in the 29 images misclassified as 
positive for diabetic retinopathy. With few exceptions, the capture 
rates for each feature were highest for the single-target Algorithm 
1, lower for the dual-target Algorithm 2, and lowest for the triple- 
target Algorithm 3.

Supplementary Table 1 lists the features observed by human 
experts for each of the 29 images, in descending severity of 
algorithmic misclassification as diabetic retinopathy. All but one 
of the 29 images (97%) contained pathology for which clinical 
and/or lifestyle intervention is indicated. The exception, Image 21, 
showed an otherwise unremarkable tessellated fundus.

Three of the thirteen images flagged by Algorithm 2 had no 
observable blood or exudate and had no heatmap highlights. The 
other ten heatmaps precisely highlighted blood (red) and exudate 
(white), as shown by the example images in Fig. 1. The three 
heatmaps generated by Algorithm 3 did not coincide with 
prominent pathology in the images, an example of which is 
shown in Fig. 1.

Algorithm-determined referral and clinical utility
Unlike Algorithm 1, Algorithms 2 and 3 provided results for mild 
non-referable diabetic retinopathy. Despite low inter-algorithm 
agreement demonstrated by the overlap of the 29 false- 
positive results for diabetic retinopathy in Fig. 2, all but one 
(97%) of the referable results (misclassified as moderate or 
severe diabetic retinopathy) and all 12 (100%) of the non- 
referable results (misclassified as mild diabetic retinopathy) 
contained clinically significant pathology likely to benefit from 
intervention.

Capture counts and number of diseases targeted
The consistent trend of decreasing detection fractions with 
increasing number of algorithm targets, previously noted for 
the individual features listed in Table 1, is also evident in the 
datasets as shown in Fig. 3. Not only did the models with fewer 
targets output more false positives in the 29 misclassified non- 
diabetics and its 28-count referable subset, but they also had 
higher capture counts in the 99 positive diabetic retinopathy 
results and its 75 count subset. It is unlikely that there is an 
exception to the overall trend in Fig. 3 where the single-target 
algorithm flagged fewer images than the two-target algorithm, 
as the single-target algorithm was not designed to output 

Table 1. List of Features in 29 Images Misclassified as Diabetic Retinopathy with Capture Rates.

Features listed with capture rates for 29 images misclassified as positive for diabetic retinopathy

Total number of images with 
feature

Features Model 1 Model 2 Model 3

n = 24 n = 13 n = 8
(% of 29) (% of Total Number of Images with Feature)

21 (72%) All Hypertensive Retinopathy 18 (90%) 12 (57%) 7 (33%)

20 (69%) Arteriolar Narrowing 18 (90%) 10 (50%) 6 (30%)

6 (21%) Haemorrhage or Microaneurysm 4 (67%) 5 (83%) 4 (67%)

6 (21%) Cotton Wool Spots 4 (67%) 4 (67%) 2 (33%)

6 (21%) Lipid Exudates (Macular Star) 6 (100%) 6 (100%) 5 (83%)

6 (21%) Tessellation (Myopic, Blonde or Tigroid Fundus) 6 (100%) 1 (17%)

5 (17%) Retinal Vein Occlusion 4 (80%) 5 (100%) 3 (60%)

4 (14%) Hypertensive Disc Swelling 4 (100%) 4 (100%) 3 (75%)

4 (14%) Macular Degeneration 4 (100%) 1 (25%)

4 (14%) Scattered or Peripheral Drusen 4 (100%) 1 (25%)

2 (7%) Macular Pigment Epithelium Disruption 2 (100%)

1 (3%) Optic Nerve Pallor 1 (100%) 1 (100%) 1 (100%)

1 (3%) Suspect Choroiditis/Malattia Leventinese 1 (100%)

1 (3%) Choroidal Naevus 1 (100%)

1 (3%) Peau d ’Orange with Angioid Streaks (Pseudoxanthoma Elasticum) 1 (100%)

1 (3%) Widened Fovea with Unusual Macular Surface (Suspect Epiretinal 
Membrane)

1 (100%) 1 (100%) 1 (100%)

1 (3%) Cuticular Drusen (associated with Membranoproliferative 
Glomerulonephritis)

1 (100%)

1 (3%) Cataract 1 (100%)
In column 1, the percentages in italics indicate the total number of images with the feature in column 2 as a percentage of the total 29 images. In columns 3–5, 
the percentages in italics indicate the number of images with the feature listed in column 2 detected by each model as a percentage of the total number with the 
feature in column 1.
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non-referable results that were included in the total counts of 
the other two algorithms.

Hypertensive retinopathy severity and misclassified diabetic 
retinopathy
Human-assessed hypertensive retinopathy features, artificially 
classified by the Keith-Wagener-Barker hypertensive retinopathy 
severity scale [72] increasing from 0 to 4, were plotted on the 
y-axis as a function of algorithmic diabetic retinopathy 
misclassification on the x-axis, to create Fig. 4. For each 
algorithm, Fig. 4 shows how both the frequency and severity 
of false-positive diabetic retinopathy results in our sample 
correlate with increasing hypertensive retinopathy features 
found in the images. Circle size represents the count at each 

intersection, with least squares regression lines showing the 
positive correlation for each algorithm.

DISCUSSION
The study demonstrated that existing deep learning models 
capture clinically important incidental pathology in fundus 
photographs misclassified as diabetic retinopathy. As noted, these 
findings specifically relate to a subset of false-positive results for 
diabetic retinopathy in an established hypertensive cohort. All 
three algorithms captured high rates (97%, 100 and 100%) of 
clinically useful non-target disease, including all (100%) of the 
results classified as non-referable by the algorithms.

The trend for algorithms targeting fewer diseases to 
capture more incidental pathology is consistent with the 
hypothesis that deep learning algorithms with less differential 
training may have data signals with broader anomaly detection 
potential. This boosts confidence in suggesting a pivot from 
the flawed disease-specific comprehensive screening trajectory 
to generalised anomaly detection with self-supervised deep 
learning.

Whether the correlation between the severity of hypertensive 
retinopathy present in the image and the number and 
severity of misclassifications as diabetic retinopathy for each 
algorithm arises from biomarker ambiguity, training image 
comorbidities, and/or untrained broader detection signals 
embedded in the deep learning pathway remains unknown as 
the process is hidden. However, clinically, both retinopathies are 
significant, and comorbidity is common, so all positive results 
(referable, non-referable and false) have potential immediate 
utility.

Similarity of incidental findings in human diabetic screening
Apart from a hypertensive skew, the features and capture rates 
shown in Table 1 are comparable to the incidental pathologies 
found in human expert diabetic screening programs [45, 
48–55, 73, 74]. In human diabetic retinal screening, hypertensive 
retinopathy is the most common incidental finding (14 to 34% 
[45, 48]), followed by drusen (14 to 21% [45]), macular 
degeneration (0.5 to 18% [45, 48–50]), and retinal vein occlusion 
(0.7% to 2.2% [45]). Other less common incidental findings 
include myopic choroidopathy, disc pallor, glaucoma, retinal 
emboli, geographic atrophy, epiretinal membranes, choroidal 
nevi, cataract, and posterior capsular opacities [45, 48, 50–55]. 
Referable incidental pathology in human diabetic screening varies 
from 24 to 45% [45, 53, 54], often with higher capture rates than 
the targeted diabetic retinopathy [51, 52]. The similarity of these 
incidental findings suggests that deep learning false-positive 
results from diabetic populations may contain a high proportion 
of the clinically valuable incidental pathology found by human 
assessment.

Similarity of false-positive results in general populations
The few published deep learning false-positive results for 
diabetic retinopathy are based on general population verifica
tion datasets and list drusen, exudate, microaneurysm, macular 
degeneration, venous occlusion, myopic maculopathy, arterio
venous crossing changes, and “normal” [46, 47, 56–59]. 
These features are a subset of those found in the hypertensive 
sample and do not necessarily represent the full set of 
anomalies that may occur for two reasons. First, the “normal” 
false-positive results may reflect deep learning anomaly detec
tion beyond human observation, which would not be a false- 
positive error, but rather a subclinical detection and verification 
failure. Second, the selected anomalies are presented as 
plausible explanations for misclassification errors rather than 
a representation of the full set of features present in the 
false-positive images. Despite limited data, two algorithms 

28 of the 29 Misclassified Images were Clinically Useful
(Referable and Non-Referable)

Algorithm 1
n = 24

Algorithm 2
n = 13

Algorithm 3
n = 8

217 Non-Referable

2121 Referable*

212 Non-Referable

212 Referable

213 Non-Referable

211 Referable

211 Referable

21Referable Only**

Fig. 2 All but 1 of the 29 misclassified images were clinically 
useful. Figure 2 shows the low inter-algorithm agreement and the 
distribution of referable and non-referable results within the 29 
misclassified images. All but one of the 29 images had clinically useful 
biomarkers.

Fig. 1 Example image with heatmaps. The original image in Fig. 1 
is one of the two images misclassified as referable diabetic 
retinopathy by all three algorithms (A). Of the three heatmaps, two 
are from Algorithm 2 precisely highlighting blood (B) and exudate (C), 
while the heatmap from Algorithm 3 (D) did not match the prominent 
pathology in the image.
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reported referable pathology rates for their false-positive 
results of 80% [59] and 92% [47], suggesting that further 
investigation of false-positive results in wider populations may 
prove clinically useful.

Differential diagnosis of hypertensive and diabetic 
retinopathies
Although algorithmic pathways are hidden, the sensitivity of 
diabetic algorithms to hypertensive retinopathy may arise from 
the artificial and incomplete human classification of training 
images due to ambiguous biomarkers between the retinopa
thies [75]. This ambiguity appears to increase for earlier shared 
biomarkers, such as capillary rarefaction and reduced vessel 
density as seen with OCTA [76, 77] and is demonstrated 
algorithmically by a 6% specificity rise for Algorithm 2 when 
mild diabetic retinopathy detection was excluded [68, 69]. The 
correlation found between the degree of hypertensive retino
pathy and the severity of diabetic misclassification not only 
shows that deep learning models can capture useful non-target 
pathology as false-positive results, but also raises the possibility 
that human limitations in biomarker knowledge may lead to 
algorithmic misclassification, inhibiting target-specific algorithm 
development.

Expanding deep learning utility
Algorithm target-specificity hinders progress towards autono
mous comprehensive screening not only from misclassification 
and missed incidental disease, but also from inter-algorithm 
inconsistency and ethical bias. Disease-specific deep learning 
models are trained to make innumerable comparisons to define 
volume-derived baseline data to which inputs may be matched. 
Inconsistency and ethical concerns arise from the variable and 
biased human selection of training data and supervision used to 
define the hidden baseline data. Although saliency analysis, a 
technique of progressively sectioning the fundus to isolate 
anomalies, has been successful in refining heatmap outputs to 
theorise biomarkers used by an algorithm [78], and generative 
artificial intelligence modification of hypothesised features can 
further isolate potential data signals used to determine algorithm 
output [79], the baseline data is not exposed and outputs still vary 
between algorithms. This poses regulatory challenges, such as 
transparency of embedded normative data as applied to OCT 
[80–82] and raises ethical issues of input bias.

The consistency of the distribution of incidental findings found 
in false positive results in this study and in screening diabetic and 
general populations with other deep learning models increases 
confidence in the hypothesis that deep learning models have 
data signals capable of broader anomaly detection. As deep 
learning models are based on pattern recognition and discrimina
tion, training on the existing vast and diverse repository of 
healthy retinal images to define normative data may generate a 
more comprehensive, consistent, and generalisable model. To 
differentiate pathology from anomalies arising from lighting, 
positioning, media opacities, and artefacts [83] without artificial 
classification and human supervisory bias, an autoencoding 
technique, known as self-supervision, has demonstrated success 
in distinguishing not only artefacts and media opacities, but also 
tessellation [84]. A variety of self-supervised feature learning 
models have been developed for medical imaging [85] including 
one using OCT images that is capable of general anomaly 
detection without differential diagnostic output [86]. Such initial 
triage could be of immediate benefit for those with access to OCT, 
but exceptional access would be realised when sufficient datasets 
and biomarker knowledge are available to use external eye 
images [87, 88]. Until then, self-supervised learning models to 
analyse fundus photographs could not only address scope, 
consistency, and ethical issues, but also provide opportunities 
for novel associations and biomarker discovery. A foundational 
model has now become publicly available, offering anomaly 

Diabetic Retinopathy
Positive (n=99)

Diabetic Retinopathy
Referable (n=75)

False Positive
Subset (n=29)

False Positive
Referable (n=28)

Single Target Model 59 59 24 23
Two Target Model 61 28 13 3
Three Target Model 35 15 8 3

59 59

24 23

61

28

13
3

35

15
8

3
0
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20
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40
50
60
70

* 

D E C R E A S I N G  C A P T U R E  C O U N T S  F O R  M U LT I - D I S E A S E  M O D E L S

Fig. 3 Detection counts for single, double, and triple target algorithms. Figure 3 shows that the algorithms with fewer targets not only 
output more false positives in the 29 misclassified non-diabetic results and its 28-count referable subset, but also had higher capture counts in 
the 99 positive diabetic retinopathy results and its 75-count referable subset. It is unlikely that there is an exception in the 99 positive diabetic 
retinopathy results where the single-target model did not return the most positive results, as the model was not designed to output non- 
referable results, which were included for the other two models.
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Mild               Moderate           Severe     Misclassified Diabetic Retinopathy

Positive Correlation of Retinopathy Severity:
Hypertensive and Misclassified Diabetic

Algorithm 1

Algorithm 2

Algorithm 3

Linear (Algorithm 1)

Linear (Algorithm 2)

Linear (Algorithm 3)

Fig. 4 Positive correlation of retinopathy severity: hypertensive 
and misclassified diabetic. Figure 4 plots the severity of hyperten
sive retinopathy, according to the Keith-Wagener-Barker scale, 
increasing from 0 to 4, for the misclassified diabetic retinopathy 
results of each algorithm: 24 points for Algorithm 1, 13 points for 
Algorithm 2, and 8 points for Algorithm 3. The count at each 
intersection is represented by circle sizes and least squares regression 
lines show the positive correlation for all three algorithms.
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detection without diagnostic classification, ready for differential 
diagnosis development and labelling [89].

Strengths and limitations
To strengthen internal validity, exclusively non-diabetic partici
pants comprised the subset of false-positive results for diabetic 
retinopathy. This not only eliminated potential human grading 
errors, but also minimised false-positive misclassification of true 
positive images arising from algorithmic subclinical detection of 
diabetic vascular changes [69], such as capillary damage [76, 77] 
which are known to exist prior to threshold glycated haemoglo
bin indicators in both prediabetics [90] and diabetics [91].

However, these results may have limited external generalisa
bility as they represent a single site with potential selection biases 
related to hypertensive status, diabetic status, demographics, and 
voluntary participation. The extent of verified retinal pathology in 
the wider clinical population is unknown, and the high capture 
rate of clinically significant pathology observed in this at-risk 
subset of false-positive results may not be broadly representative.

CONCLUSION
The deep learning models in this study captured high rates of 
clinically significant incidental pathology in the misclassified non- 
diabetic results studied, raising the possibility of immediate 
clinical use of false positives in broader (beyond diabetic) 
screening and in other (beyond hypertensive) populations.

In the quest for full-scope autonomous screening, current 
development combining disease-specific models is flawed by 
limitations of human biomarker knowledge and the inability to 
train for rare and novel diseases. Conceivably, incidental capture 
may approach full-scope disease detection, but the study found 
that more incidental disease was captured by less trained models, 
which better aligns with using self-supervised deep learning to 
expand biomarker knowledge and as an alternate route to 
achieve comprehensive autonomous retinal screening.

SUMMARY

What was known before

● Deep learning models can detect target retinal diseases 
earlier and more accurately than human experts.

● Deep learning models are not trained to detect important 
incidental pathology found by human screening.

What this study adds

● Targeted deep learning retinal analysis may capture high 
rates of clinically useful non-target pathology as false-positive 
results.

● Development of self-supervised deep learning models is 
proposed as an alternate pathway to achieve comprehensive 
autonomous retinal screening.

DATA AVAILABILITY
The data supporting the findings of this study are not publicly available due to 
participant privacy protections but are available from the corresponding author 
upon reasonable request.
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