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Glaucoma is the commonest cause of irreversible blindness worldwide, with over 70% of people affected remaining undiagnosed. 
Early detection is crucial for halting progressive visual impairment in glaucoma patients, as there is no cure available. This narrative 
review aims to: identify reasons for the significant under-diagnosis of glaucoma globally, particularly in Australia, elucidate the role 
of primary healthcare in glaucoma diagnosis using Australian healthcare as an example, and discuss how recent advances in 
artificial intelligence (AI) can be implemented to improve diagnostic outcomes. Glaucoma is a prevalent disease in ageing 
populations and can have improved visual outcomes through appropriate treatment, making it essential for general medical 
practice. In countries such as Australia, New Zealand, Canada, USA, and the UK, optometrists serve as the gatekeepers for primary 
eye care, and glaucoma detection often falls on their shoulders. However, there is significant variation in the capacity for glaucoma 
diagnosis among eye professionals. Automation with Artificial Intelligence (AI) analysis of optic nerve photos can help 
optometrists identify high-risk changes and mitigate the challenges of image interpretation rapidly and consistently. Despite its 
potential, there are significant barriers and challenges to address before AI can be deployed in primary healthcare settings, 
including external validation, high quality real-world implementation, protection of privacy and cybersecurity, and medico-legal 
implications. Overall, the incorporation of AI technology in primary healthcare has the potential to reduce the global prevalence of 
undiagnosed glaucoma cases by improving diagnostic accuracy and efficiency.
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INTRODUCTION
Glaucoma poses a significant public health challenge. Despite its 
impact, a large percentage of glaucoma cases remain undetected, 
especially in primary eye care settings [1]. The primary objective 
of our review article is to explore the reasons behind the 
underdiagnosis of glaucoma, particularly in Australia, and discuss 
how recent advances in Artificial Intelligence (AI) applications can 
be utilised to improve diagnostic outcomes.

The review article will delve into the global significance of 
glaucoma and undetected cases, highlighting the prevalence of 
underdiagnosis in different regions, including Australia. We will 
examine the challenges faced by primary healthcare providers in 
accurately diagnosing glaucoma, such as the complexity of the 
diagnostic process and the lack of specialised training and 
equipment. Furthermore, we will discuss the potential of AI 
applications in addressing these challenges and improving 
glaucoma detection rates.

Our article will provide a comprehensive overview of the 
clinical detection of glaucoma, focusing on the use of digital 
imaging technologies, such as monoscopic fundus photos and 
optical coherence tomography (OCT), as well as the importance of 

visual field testing. We will also highlight the importance and 
challenges of glaucoma care at the primary eye care level, 
emphasising the roles of general practitioners (GPs) and 
optometrists in glaucoma diagnosis and management.

The section dedicated to AI applications will explore the 
potential of AI algorithms in glaucoma detection. We will present 
the performance of AI algorithms using fundus photography, 
OCT, and visual fields, showcasing their accuracy in diagnosing 
glaucoma. Additionally, we will discuss the deployment of AI 
products in clinical practice, addressing potential risks and the 
need for validation studies and protocols to ensure the reliability 
and safety of AI-assisted diagnosis.

GLOBAL SIGNIFICANCE OF GLAUCOMA AND UNDETECTED 
GLAUCOMA
The global significance of glaucoma and its underdiagnosis is a 
significant public health issue due to its status as the leading 
cause of irreversible blindness worldwide [2–4]. Glaucoma is the 
second leading cause of blindness among people aged 55 and 
over in Australia [5]. Despite its impact, over 70% of people with 

1Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia. 2Ophthalmology, Department of Surgery, Faculty of Medicine, Dentistry & 
Health Sciences, University of Melbourne, Melbourne, VIC, Australia. 3Lost Child’s Vision Project, Sydney, NSW, Australia. 4Centre for Eye and Vision Research, The Hong Kong 
Polytechnic University, Kowloon TU428, Hong Kong SAR. 5Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia. 6Stanford 
Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA. ✉email: cjan541@gmail.com

Received: 25 July 2023 Revised: 5 February 2024 Accepted: 8 March 2024 

1
2

3
4

5
6

7
8

9
0

()
;,:

www.nature.com/eye
http://crossmark.crossref.org/dialog/?doi=10.1038/s41433-024-03026-z&domain=pdf
http://orcid.org/0000-0001-7383-8208
http://orcid.org/0000-0002-9897-1192
http://orcid.org/0000-0003-1805-1271
https://doi.org/10.1038/s41433-024-03026-z
mailto:cjan541@gmail.com


glaucoma remain undiagnosed globally [1]: 78%−94% for Africa 
[6], 72%−84% for Asia [7, 8], 57%−68% for Europe [9], 62%−78% 
for North America [10], 75%−88% for Latin America [11] and, 50% 
−60% for Australia and Oceania [7, 12–14]. The estimated 
numbers of glaucoma cases worldwide in 2020 are 52.7 million 
detected versus 43.8 million undetected. These numbers will 
increase in 2040 to 79.8 million and 67.1 million, respectively 
[1, 15].

The organisation of eye care services, skill levels of involved 
health care providers, and access to relevant health technologies 
contribute to glaucoma underdiagnosis. Organisational issues, 
particularly who provides eye care and who pays for it, varies 
globally. In Australia, the U.S., and many western European 
nations, routine eyecare is often fragmented between optome
trists and primary healthcare physicians (GP), while ophthalmol
ogists handle specialised patients and issues on referral from 
each. Inadequate diagnostic technology and provider training 
further exacerbate underdiagnosis. A new form of technology, 
Artificial Intelligence (AI), offers a potentially favourable transfor
mation for glaucoma diagnosis. This promise, however, will 
depend on key financial, logistical, and organisational hurdles. 
The Australia example of diagnosing and managing glaucoma 
could be globally useful in addressing the significant public 
health issue of glaucoma underdiagnosis.

A non-systematic literature review was conducted based on 
articles published in peer-reviewed journals from the following 
databases: PubMed, oScopus, Medline-OVID, EMBASE, Cochrane 
Library, Web of Science and nongovernment organisation reports 
on 15 April 2023 using search terms to identify articles with no 
limitations on the publication year. The search combinations 
included “Glaucoma Care”, “Glaucoma Management”, “Glaucoma 
Diagnosis”, “Glaucoma Progression”, “Artificial Intelligence”, 
“Deep Learning”, “Machine Learning”, “Neural Networks”, “Baye
sian Networks”, “Clinical Tools”, and “Primary Care”.

OVERVIEW OF CLINICAL DETECTION OF GLAUCOMA
The hallmark of glaucoma is ganglion cell neurodegeneration in 
the optic nerve that is typically associated with functional loss. 
Consequently, diagnosis is largely based on optic nerve head 
(ONH) assessment and visual field (VF) testing, supplemented by 
several auxiliary tests and patient history (Table 1). Since the 
disorder is irreversible and has no available cure, early detection is 
vital for halting progressive visual impairment in glaucoma 
patients [16].

Detecting structural defects in glaucoma
Digital imaging technologies have become useful not only for 
documenting ONH and retinal nerve fibre layer (RNFL) changes 
(glaucomatous optic neuropathy or GON), but also for providing 
an objective, quantitative and convenient method to assist 
clinicians in glaucoma diagnosis.

Monoscopic fundus photos. Accurate and consistent detection of 
the optic disc and RNFL due to progressive retinal ganglion cell 
death is the key to glaucoma diagnosis [17]. Traditionally, 
mydriasis is recommended to obtain a stereoscopic view for 
optic disc assessment. But a recent study shows that monoscopic 
optic disc photography provides non-inferior diagnostic accuracy 
for the clinical evaluation of all optic disc characteristics and 
glaucoma likelihood [18]. Monoscopic disc images offer a fast and 
affordable method to aid in GON detection.

Optical coherence tomography (OCT). OCT is a non-contact, 
optical imaging technique that uses low coherence interferome
try to measure backscatter from different layers of the optic nerve 
head and retina [19]. In a few seconds, it captures structural 
information such as RNFL thickness, ganglion cell layer thickness, 

disc size, and minimum rim width [20, 21] (the minimum rim 
width identifies the nerve fibre thickness passing out of the eye 
back to the brain). Pragmatically, longitudinal data are unlikely to 
be available to establish the initial glaucoma diagnosis. Therefore, 
structural information from a single observation (cross-sectional 
observation) could be considered as standard for diagnosis [20].

Detecting functional impairment in GON
Visual field testing. Visual sensitivity progressively declines in 
glaucoma. Standard automated perimetry (SAP) over the central 
24°−30° of the visual field is the current recommended procedure 
for visual field testing in glaucoma [19, 22]. It measures retinal 
sensitivity to increments of light at many locations across the 
visual field. The 24−2 grid (central 24 indicates that the central 24 
degrees of visual field and the next number indicates how the 
grid of points is aligned to the visual axis) is the preferred test 
strategy for this purpose, although the 30−2 is sometimes used 
to rule out other neurological conditions [23]. Repetition of visual 
field testing at baseline using the same threshold strategy is 
essential to establish a baseline so that the earliest presence of 
glaucomatous functional defect can be identified, and to 
accommodate for learning effects in performing the visual field 
test [24]. Visual field testing is recommended more than twice a 
year [25], with a minimum of three-times per year suggested to 
overcome test variability and identify progression in newly 
diagnosed glaucoma patients [26]. This frequency of testing will 
obviously challenge health care systems. Recent work indicates 
that a combination of structural and functional measures (VF and 
OCT) gives the greatest sensitivity for diagnosis and identifying 
progression in glaucoma [27].

IMPORTANCE AND CHALLENGES OF GLAUCOMA CARE AT 
PRIMARY LEVELS IN AUSTRALIA
Challenges faced by primary healthcare providers in 
glaucoma diagnosis
Glaucoma diagnosis is a complex process that requires targeted 
evaluation by eye care professionals. While primary healthcare 
providers play an important role in glaucoma screening, they face 
numerous challenges in accurate diagnosis. The diagnostic 
process includes history taking, assessment of the ONH and 
RNFL, measurement of intraocular pressure (IOP), evaluation of 
the anterior angle and anterior chamber by slit lamp to exclude 
angle closure or secondary causes of glaucoma, and VF 
evaluation. Although these assessments are essential for defini
tive glaucoma diagnosis, not all are required for screening to 
identify presumptive glaucoma (Box 1).

A study conducted in Victoria, Australia, found that out of 4744 
individuals, 72 cases of referable glaucoma were identified, of 

Table 1. Equipment required by optometrist in diagnosis, assessment, 
and management of glaucoma, as specified by the Optometrist Board 
of Australia.

Assessment Equipment requireda

Optic nerve head and 
RNFL

Slit lamp and fundus lens; fundus 
photography and/or OCT of posterior pole

Threshold visual fields Automated threshold perimetry tailored to 
the patient and degree of visual field loss

Anterior chamber 
angle

Slit lamp and gonioprism

Intraocular pressure Goldmann applanation tonometer

Central corneal 
thickness

Pachymeter, anterior OCT or slit-lamp

aClinical Practice Guide for the Diagnosis and Management of Open Angle 
Glaucoma 2020. (Accessed 31 Jan 2023).
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whom 35 (49%) were undiagnosed [1]. The primary cause of 
misclassification was the lack of VF screening, as 97% of their 35 
missed cases failed a VF screening test during a subsequent date. 
The study also found that 66% of the missed cases had an 
enlarged cup-to-disc ratio, which was not identified during their 
previous eyecare visits [1]. Perhaps this finding is not unexpected 
as cup-disc evaluation using ophthalmoscopy is challenging, and 
GPs are not versed in performing this procedure, so they may not 
identify abnormality from normal variations. However, in the case 
of this study, most participants who had enlarged cup-disc ratios 
had seen an optometrist or an ophthalmologist in the past year, 
and their physical state did not provide adequate evidence for 
further evaluation. This implies that cup-disc evaluation is a 
complex and challenging undertaking even for ophthalmic 
practitioners and would likely lead to high false positive or false 
negative outcomes if undertaken by GPs.

The implementation of AI has the potential to alleviate some of 
the challenges faced by primary healthcare providers in glaucoma 
diagnosis Box 2. AI technology can aid in the interpretation of 
images of the ONH, RNFL, and VF, providing a more accurate and 
consistent assessment. However, before AI can be widely adopted 
in primary healthcare settings, several issues must be resolved 
first, as we will discuss later in this article.

A case of primary eye care in glaucoma diagnosis in Austra
lia. Australia’s healthcare system is founded on the principles of 
universal health care and a robust public insurance programme, 
ensuring that all citizens and permanent residents and New 
Zealand citizens have access to free and high-quality medical 
services [28]. This fundamental aspect has played a pivotal role in 
the successful implementation of national cancer screening 

programmes for bowel, cervical and breast cancer [29]. The 
achievements of these screening programmes underscore the 
capability of Australia’s healthcare system in effectively executing 
universal screening initiatives. Considering the accomplishments 
in cancer screening, there is a strong foundation for the feasibility 
of developing and executing a universal glaucoma screening 
programme. The existing infrastructure, along with the commit
ment to preventive healthcare, positions Australia favourably to 
address glaucoma detection and management comprehensively. 
By leveraging its healthcare system’s strengths and incorporating 
the latest advancements in medical technology, Australia has the 
potential to enhance the early diagnosis and treatment of 
glaucoma, ultimately safeguarding the vision and overall health 
of its population.

In Australia there are theoretically two models of primary care 
for glaucoma detection—by GPs and by optometrists. In practice, 
however, GPs are not trained to diagnose glaucoma and do not 
have access to testing equipment, therefore the burden of 
glaucoma diagnosis falls to optometrists. However, optometrists 
may face challenges in performing all the required procedures for 
glaucoma diagnosis (Table 1), especially when under time 
pressures, as experienced by all primary health care practitioners.

Starting in 2009, topical glaucoma medications prescribed by 
optometrists became available at subsidised prices (Pharmaceu
tical Benefits Scheme, PBS) [30]. In 2020, there were 6043 
registered optometrists in Australia, with 65% having prescribing 
endorsement [31]. Despite being given increasing independence 
in prescribing [32], optometrists have not widely embraced this 
role. In 2015, latanoprost was the drug most prescribed by 
optometrists under PBS. However, while about 40% of these 
optometry prescriptions are for glaucoma management, they only 

Box 1. List of clinical procedures recommended for glaucoma 
screening in primary healthcare settings [43], where a slit lamp is 
unavailable

– Family history, history on risk factors of glaucoma
– Shadow test using flashlight or ophthalmoscope at temple (Figs. 1, 2)
– Optic Nerve Head assessment in terms of cup-disc ratio
– Visual Field screening
– Age-specific reviews (40+) doing these tests for all patients for age 40 

and above, and repeat every five years up to 60, and biannually after 
that age.

Box 2. A glossary of key terms

Artificial intelligence (AI). The study of agents that receive precepts from the 
environment and perform actions. It is concerned with both understanding and 
building intelligent entities—machines that can compute how to act effectively 
and safely in a wide variety of novel situations [94].

Machine learning (ML). A subfield of artificial intelligence that is concerned with 
the study of machines that use algorithms to identify patterns in data [95].

Supervised ML. A type of machine learning task that aims at predicting the 
desired output (such as separating “glaucomatous” from “non-glaucomatous”). It 
involves the use of data labelled by clinical experts to train machines and develop 
statistical models.

Unsupervised ML. A type of machine learning task that aims at inferring 
underlying patterns in unlabelled data.

Deep learning (DL). A subfield of machine learning that employs artificial neural 
networks with many layers to identify patterns in data [96].

Fig. 1 showing a wide-open anterior angle with flashlight 
examination, as evident by the small shadow (banana shaped 
on left) indicating a flat iris. The flashlight is located at the 
zygomatic arc on the right of the image.

Fig. 2 showing a closed anterior angle on flashlight examination. 
This indicates a prominent and forward placed iris protruding into the 
anterior chamber, causing angle closure. The flashlight is located at 
the zygomatic arc on the right of the image.
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accounted for 1.3% of all glaucoma prescriptions [32]. There were 
around 1000 full-time equivalent (FTE) ophthalmologists and 
4800 FTE optometrists employed in Australia in 2019, or 4 FTE 
ophthalmologists and 19 FTE optometrists per 100,000 popula
tion [25]. Thus, optometrists were not highly active in managing 
glaucoma with most cases referred to ophthalmology.

Current glaucoma care guidelines for optometry. A patient who 
presents to an optometrist with glaucoma risk factors during a 
routine eye examination is recommended to undergo further 
clinical investigations to determine if glaucoma is present. For this 
purpose, the Optometry Board of Australia guidelines [33] 
recommend that practising optometrists have certain equipment 
to form a proper evaluation and differential diagnosis (Table 1). If 
this equipment is not available, or if testing cannot be undertaken 
to satisfy the requirements of Table 1, then a referral should be 
made to another optometrist or ophthalmologist for specialised 
testing and interpretation of the test results.

The glaucoma assessment needs to be made by all optome
trists, whether endorsed for the use of scheduled medicines 
(therapeutically endorsed) or not. If an optometrist is therapeu
tically endorsed, they are authorised to diagnose and initiate 
glaucoma treatment independently. Once the diagnosis is 
established and the treatment started, patients are to be seen 
by an ophthalmologist within 4 months [33]. This referral reflects 
that surgical intervention is sometimes a viable first-choice 
treatment option and should be considered in all cases [34, 35].

Although this surgical related review produces a best-case 
option, delays in seeing an ophthalmologist can be substantial 
due to high caseloads [31]. A patient must be referred by a 
primary care provider (optometrist or GP) to gain access to 
specialist eye care in a public hospital in Australia and to be 
eligible for a rebate under the national health insurance act 
(Medicare Benefits Schedule) [36]. A 2020 study found that 72% of 
glaucoma referrals to the public hospital system came from 
optometrists [37]. However, the study also found that the median 
wait-time for patients to be seen by an ophthalmologist at the 
hospital can be as long as 400 days [37]. This delay in treatment 
can lead to irreversible sight loss, which can be avoided if 

optometrists/GPs prescribe IOP reducing drugs on diagnosis, 
given that most optometrists are therapeutically qualified. It will 
also act to minimise the possibility of vein occlusion associated 
with lengthy exposure to elevated IOP. Patients can suffer harm 
and sight loss due to 22 week delay in achieving hospital 
attendance [38], which supports an argument for therapeutic 
intervention on diagnosis to reduce the potential for sight loss 
prior to hospital attendance.

Why are so many people with glaucoma not diagnosed?
The cause of the high prevalence of undetected glaucoma is 
multifactorial [39–41]. Firstly, as above, glaucoma diagnosis 
requires the consideration of complex diagnostic tests, many of 
which are not available to GPs and some optometry settings. 
Additionally, glaucoma (except for acute angle closure glaucoma) 
is hard to diagnose as patients have few or no symptoms of the 
disease [4]. Visual symptoms are rare in early and middle stages of 
glaucoma, thus glaucoma is coined “the silent thief of vision”[1].

Secondly, while universal screening for glaucoma is not cost- 
effective in Western countries [42], detection of glaucoma relies 
on primary care providers, namely optometrists and GPs. 
However, GPs rarely test patients for glaucoma due to a lack of 
training and specialised equipment [43]. Fortunately in Australia, 
we have universal health coverage for routine comprehensive eye 
examinations in optometry settings, and all optometry students 
are trained in glaucoma care. However, variation exists in ONH 
assessment, which could have contributed to the high rate of 
undetected glaucoma reported in Australia [44].

A population study [1] in Victoria found that undiagnosed 
glaucoma was as high as 63% (Fig. 3). Of the undiagnosed cases, 
66% had seen an optometrist in the past year, 97% did not have a 
visual field test performed, and 66% had Cup-to-Disc (CDR) ratios 
consistent with glaucoma (>0.7) but were not recorded as such. 
Of note, out of those undiagnosed cases with CDR > 0.7, 65% had 
seen an optometrist and 48% had seen an ophthalmologist in the 
past year [1]. This indicates that glaucomatous disc changes are 
challenging to detect, which may explain the significant missed 
diagnosis. The prevalence of undiagnosed disease is even higher 
in minority populations [45, 46].

Fig. 3 Undiagnosed glaucoma in Victoria, Australia (calculated on data from Wong et al. [1]).
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Standardising the detection of GON based on structural and 
functional changes can help bridge the gap in glaucoma 
detection. AI can potentially play a useful role in this regard by 
providing consistent imaging interpretation and identifying high 
risk cases for closer consideration by the optometrist.

POTENTIAL OF AI (ARTIFICIAL INTELLIGENCE) IN GLAUCOMA 
DIAGNOSIS IN PRIMARY EYE CARE SETTINGS
Context and definition
When Deep Blue (a chess-playing computer developed by IBM 
[47]) defeated Garry Kasparov (the youngest world chess 
champion in history) in 1997, the defenders of human supremacy 
moved humanity’s battleground to Go (an abstract strategy board 
game for two players in which the aim is to surround more 
territory than the opponent. The number of legal board positions 
in Go has been calculated to be approximately 2.1 × 10170 [48], 
which is far greater than the number of atoms in the observable 
universe, estimated to be of the order of 1080) [49]. Piet Hut, an 
astrophysicist and Go enthusiast, predicted that it would take “a 
hundred years before a computer beats humans at Go—maybe 
even longer.” But in just under 20 years since Deep Blue vs. 
Kasparov, a computer programme developed by neuroscientist 
and chess prodigy Demis Hassabis and his DeepMind team 
surpassed all human players at Go [50].

As in other domains, AI is rapidly changing the healthcare 
landscape. Recent advancements in AI have introduced promising 
opportunities for efficient and cost-effective glaucoma detection 
programmes. Many studies have shown that AI algorithms now 
equal or exceed expert diagnostic accuracy for many conditions, 
particularly when the diagnosis is based on image interpretation, 
such as in dermatology and radiology [51–57]. Eye care is the 
frontrunner of the AI revolution in health care because diagnos
ing eye conditions heavily depends on imaging. In 2018, IDx-DR 
(Digital Diagnostics), designed to detect diabetic retinopathy and 
diabetic macular oedema, became the first FDA-approved 
autonomous AI device in any field of medicine [58]. The 
integration of AI into the glaucoma diagnostic process has the 
potential to significantly reduce costs and resource burdens and 
provides a potential to yield more accurate diagnosis.

Overview for performance of AI algorithm in glaucoma 
detection
AI using fundus photography. AI can help address the issue of 
variation in the assessment of ONH and RNFL changes. 
Segmentation and structured learning from various studies 
achieved an accuracy between 94% and 98% [59, 60] in reaching 
a correct diagnosis from fundus photos in glaucoma. Various 
deep learning algorithms based on fundus features such as the 
cup-to-disc ratio achieved area under receiver operating curve 
(AROC) between 0.53 and 0.996 in differentiating healthy from 
glaucomatous eyes [61–64], with a sensitivity ranging from 96% 
to 100% [61, 65], and specificity of 98% [64, 65]. Recently, Machine 
Learning (ML) algorithms developed from the interrogation of 
50,000 fundus photos achieved an area under curve (AUC) of 
0.986 with 95.6% sensitivity and 92% specificity for identifying 
referable GON [66]. AI-based tools can provide standardised and 
objective assessments, leading to more accurate and consistent 
diagnoses.

AI using OCT. The RNFL thickness is one common parameter 
utilised for glaucoma diagnosis [67] and became a key focus in ML 
using OCT images. Since 2005, studies have reported the 
performance of ML algorithms analysing OCT imaging data from 
peripapillary RNFL thickness maps and the macular ganglion cell 
complex for detecting GON, with AROC values ranging from 0.69 
to 0.99 [68–75]. A recent study showed that Deep Learning (DL) 
network achieved an AROC of 0.94 for detecting GON using 

unsegmented OCT volumes of the optic nerve head [76]. Given 
the cost of OCT this application of AI is likely best retained for 
specialist or optometry practice where ocular OCT can be applied 
for many other purposes.

AI using visual fields. AI algorithms to diagnose glaucoma using 
datasets derived from VF testing have been studied since 1994 
[77–81]. Notably, DL algorithms to diagnose glaucoma with data 
from standard automated perimetry (SAP) with Humphrey VF 
24-2 and 30-2 SITA standard VF test outperformed the 
diagnostic accuracy of glaucoma experts in differentiating 
normal from glaucomatous VFs, with a sensitivity of 93% and 
specificity of 83% [82]. Furthermore, algorithms trained using a 
combination of OCT images and SAP VF results reached an 
AROC of 0.98 for identifying patients with glaucoma [83]. The 
cost of many dedicated testing devices is prohibitive for general 
application but the recent advent of a cheap screening option 
(the Melbourne Rapid Fields app [84]) makes this suited for such 
purposes. Figure 4 illustrates examples for such screening 
options and where the interpretation of results is given in terms 
of a “probability of abnormality score” (coloured bar) to assist 
the clinician’s decision making process and identify high risk 
cases.

Multi-modal AI models. Research has also utilised multimodal 
structural data to enhance the assessment of glaucomatous 
structural damage from optic disc photographs for segmentation 
and detection [85, 86]. A recent multimodal model was developed 
using the Xception model for image feature extraction and various 
ML algorithms such as random forest (RF), support vector machine 
(SVM), dense neural network (DNN), and others showed impressive 
area under the receiver operating characteristic curve (AUROC) 
values for the different algorithms: RF had an AUROC of 99.56%, 
SVM had 99.59%, and DNN had 99.10% while analysing the vertical 
cup-to-disc ratio and mean RNFL thickness in the detection of 
glaucoma in a population with high incidence of myopia [87]. 
Another recent study showed that FusionNet based on bimodal 
input of VF and OCT paired data demonstrated superior 
performance to algorithms based on VF or OCT alone [88].

Incorporation of AI products in Australian primary care
Recent advancements in imaging technologies (such as OCT and 
retinal photos) allow primary care clinicians and eye specialists to 
identify the structural damage caused by glaucoma [89]. 
However, these advances come with a high cost of equipment 
and significant time required to interpret the image or results. 
Moreover, it is becoming increasingly challenging for busy 
primary eyecare clinics to undertake such imaging without 
incurring substantial costs.

Furthermore, there is substantial variation in the visual 
interpretation of ONH features among clinicians [90]. This 
variation can be present between different clinicians (inter- 
observer variation) and between assessments made at different 
times by the same clinician (intra-observer inter-session variation). 
A recent study [90] involving 197 ophthalmic clinicians from 22 
countries showed substantial under diagnosis based on optic 
nerve head photos from patients with known glaucoma. 
Ophthalmology trainees (22%) and comprehensive ophthalmol
ogists (24%) consistently underestimated the likelihood of 
glaucoma. This level of underestimation contributes to unde
tected cases of glaucoma, supporting the need for AI-assisted 
clinical evaluation.

Automation by AI offers an opportunity to mitigate the time 
and cost challenges of image analysis and reduce diagnostic 
variation compared to human clinicians (Fig. 5). Figure 5 shows 
the outcome of an optic nerve image processed with AI that was 
consistently graded as having glaucoma by AI but returned 
variable diagnoses between 5 expert clinicians.
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Figure 6a, b propose two potential models where AI can be 
incorporated into primary care settings for glaucoma detection. 
The assortment of tests was developed based on currently available 
guidelines for glaucoma detection in primary care settings [43, 91] 
and adopting easy to use and interpret methods for diagnosis. 
More research is required to investigate the best AI-assisted model 
for the detection of glaucoma in primary care settings.

Managing potential risks of AI use in glaucoma diagnosis
Significant progress in ML and imaging technologies enable AI 
to identify glaucoma signs. However, despite rapid progress in 

AI for glaucoma detection under laboratory settings, its real- 
world application has not been fully realised. The lack of a 
unified “gold standard” for glaucoma diagnosis is perhaps one 
of the biggest challenges that AI faces, as different AI 
algorithms focus on different aspects of the disease. For 
instance, the AI that focuses on evaluating the optic nerve 
head only evaluates structural information alone. A potential 
area of improvement is to develop algorithms with a more 
‘holistic’ evaluation of structural and functional information, as 
well as information on other glaucoma risk factors such as 
family history and age.

Fig. 4 An example of visual field screening. a visual field screening result using the Melbourne Rapid Fields app [84] for a 57 year old male 
showing the risk for glaucoma is low. b visual field screening result using the Melbourne Rapid Fields app [84] for a 68 year old female showing the 
risk for glaucoma is high. The data were collected using Melbourne Rapid Fields app and required about 1−1.5 min for testing (from Chia et al. [93]).

C. Jan et al.  

6

Eye



Furthermore, there is a lack of prospective clinical trials 
applying AI in real world settings. For example, in the 
technologies for breast cancer screening with mammography, 
these issues have been particularly problematic [55]. Our team is 
actively trialling several AI models in optometry and GP settings 
and hope to publish relevant findings on the efficiency (such as 
accuracy, speed and acceptability of glaucoma screening) and 
cost-effectiveness of AI incorporation in screening programmes. 
In addition, real world AI implementation is impeded by 
challenges such as image quality, legal risks, and regulatory 
issues, which have barely been systematically summarised. Poor 
image quality can yield a high amount of ungradable images, 
which can lead to false positives and high health care cost. 
Furthermore, there have been concerns that increased reliance on 
AI may lead to deskilling of ophthalmic clinicians, and around 
privacy and cyber security as the large amount of personal 
information contained in the AI systems can increase the risk of 
data leakage. A systematic review on the patient privacy 
perspective on health information exchange [92] has found many 
patients express concerns about their health data privacy. 
Evidence-based protocols should be in place to safeguard 
algorithms and datasets against attacks. The introduction of AI- 
based technology may increase the cost of care, and if these costs 
are borne by individual patients, people of lower social economic 
status may remain undiagnosed. The best way for these tests to 
become widely available is for them to be included in health 
screening programmes promoted by national or private insurance 
companies. Our ongoing research, currently under review, 
pertains to cost-effectiveness analyses of AI-assisted glaucoma 
screening models within the context of Australia. The findings 
from our study indicate that the integration of AI assistance into 
population-based glaucoma screening programmes is cost- 
effective compared to traditional screening by optometrists 
(unpublished data, C. Jan 2023). These results suggest the 
economic feasibility of policy makers considering the adoption 
of universal glaucoma screening initiatives throughout Australia. 
However, it is imperative to note that the precise modalities and 
logistics for implementing such a programme remain to be 
defined. Furthermore, the medico-legal ramifications associated 
with placing reliance on technology for diagnostic purposes are 
expected to gain increasing significance and should be addressed 
in the context of healthcare policy and practice.

External validation studies are required to ensure the validity of 
deep learning algorithms and to better understand the 

mechanism underlying the technology or “thought process” of 
AI. Unlike human clinicians, current AI programmes are unable to 
take a holistic approach to patient care or consider other external 
contributing factors (such as social and psychological aspects) to 
management. Clinical trials are required to compare care models 
from practices with and without AI in real world primary care 
settings. AI is a tool that assists, not replaces, human clinicians.

AI-development beyond academia
Our review focuses on the prevalence of undiagnosed glaucoma 
in Australia and the crucial role played by primary healthcare 
providers in glaucoma care within the Australian healthcare 
system. While our primary emphasis is not on industrial 
advancements, it is important to acknowledge the growing 
prominence of AI-enabled glaucoma screening outside the 
academic sphere, necessitating an exploration of the latest 
industry developments. For instance, as of January 2023, Eyenuk 
(US) has achieved the noteworthy accomplishment of securing 
the first European Union MDR Certification for autonomous AI 
detection of glaucomatous optic nerve damage utilising coloured 
fundus photographs. Furthermore, Eyetelligence (Australia), 
Digital Diagnostics (US), RetinaLyze (Denmark), and Ophthalmic 
Sciences (Israel) are actively engaged in the development of AI- 
based products aimed at facilitating glaucoma screening through 
the analysis of fundus photographs.

CONCLUSION
This review highlights the significant challenge of glaucoma 
underdiagnosis, which can be attributed to variations in optic 
nerve head assessment, under-performing VF testing, and time 
constraints, consistent with challenges faced by primary health
care practitioners in general in Australia. AI has shown the 
potential to mitigate these problems by carrying out glaucoma 
assessment (at least partially) in a consistent manner. The 
emergence of AI technology offers a promising solution to these 
challenges by enabling a more consistent and objective diagnosis 
of glaucoma. This is in contrast to the current situation, which is 
often characterised by inconsistent work-up and interpretation. AI 
algorithms have demonstrated high accuracy in diagnosing 
glaucoma and can provide a rapid diagnosis, thereby reducing 
the risk of misdiagnosis and enabling earlier treatment. Integrat
ing AI into the diagnostic process for glaucoma has the potential 
to revolutionise the field and improve patient outcomes.

Fig. 5 Image with grading results that showed disagreement even among glaucoma specialists, but AI produced consistent results. 
Each user represents one glaucoma specialist (internal data from Prof. Mingguang He, obtained in March, 2022).
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In primary eye care settings, advanced imaging technologies such 
as fundus photography and OCT, automated visual field testing, 
electronic health records, and large digital datasets are becoming 
increasingly available. These technologies can facilitate translational AI 
research to improve the evidence-based and consistent identification 
of glaucoma. As optometrists and GPs remain the first point of contact 
for patients with eye problems in Australia and other countries, the 
integration of AI into primary eye care settings has the potential to 
significantly improve glaucoma diagnosis and management.
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