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BACKGROUND: Diabetic Retinopathy (DR) is a leading cause of blindness worldwide, affecting people with diabetes. The timely 
diagnosis and treatment of DR are essential in preventing vision loss. Non-mydriatic fundus cameras and artificial intelligence (AI) 
software have been shown to improve DR screening efficiency. However, few studies have compared the diagnostic performance 
of different non-mydriatic cameras and AI software.
METHODS: This clinical study was conducted at the endocrinology clinic of Akdeniz University with 900 volunteer patients that 
were previously diagnosed with diabetes but not with diabetic retinopathy. Fundus images of each patient were taken using three 
non-mydriatic fundus cameras and EyeCheckup AI software was used to diagnose more than mild diabetic retinopathy, vision- 
threatening diabetic retinopathy, and clinically significant diabetic macular oedema using images from all three cameras. Then 
patients underwent dilation and 4 wide-field fundus photography. Three retina specialists graded the 4 wide-field fundus images 
according to the diabetic retinopathy treatment preferred practice patterns of the American Academy of Ophthalmology. The 
study was pre-registered on clinicaltrials.gov with the ClinicalTrials.gov Identifier: NCT04805541.
RESULTS: The Canon CR2 AF AF camera had a sensitivity and specificity of 95.65% / 95.92% for diagnosing more than mild DR, the 
Topcon TRC-NW400 had 95.19% / 96.46%, and the Optomed Aurora had 90.48% / 97.21%. For vision threatening diabetic 
retinopathy, the Canon CR2 AF had a sensitivity and specificity of 96.00% / 96.34%, the Topcon TRC-NW400 had 98.52% / 95.93%, 
and the Optomed Aurora had 95.12% / 98.82%. For clinically significant diabetic macular oedema, the Canon CR2 AF had a 
sensitivity and specificity of 95.83% / 96.83%, the Topcon TRC-NW400 had 98.50% / 96.52%, and the Optomed Aurora had 94.93% 
/ 98.95%.
CONCLUSION: The study demonstrates the potential of using non-mydriatic fundus cameras combined with artificial intelligence 
software in detecting diabetic retinopathy. Several cameras were tested and, notably, each camera exhibited varying but adequate 
levels of sensitivity and specificity. The Canon CR2 AF emerged with the highest accuracy in identifying both more than mild 
diabetic retinopathy and vision-threatening cases, while the Topcon TRC-NW400 excelled in detecting clinically significant diabetic 
macular oedema. The findings from this study emphasize the importance of considering a non mydriatic camera and artificial 
intelligence software for diabetic retinopathy screening. However, further research is imperative to explore additional factors 
influencing the efficiency of diabetic retinopathy screening using AI and non mydriatic cameras such as costs involved and effects 
of screening using and on an ethnically diverse population.
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INTRODUCTION
Diabetic Retinopathy (DR) represents a significant global health 
concern, contributing substantially to blindness and vision 
impairment (ref. [1]). DR can be diagnosed through comprehen-
sive retinal examination. The complications associated with 
proliferative DR and diabetic macular oedema (DMO) can lead 
to severe vision loss, and in some cases, blindness. However, early 
diagnosis plays a pivotal role in preventing or effectively treating 
these complications. Despite the need for regular ophthalmic 
examinations among diabetic patients to prevent vision loss, less 

than half of diabetic patients adhere to the recommended 
examination schedule (ref. [2]).

The TURDEP-II Study, conducted on a large population in 
Turkey in 2013, found the prevalence of diabetes mellitus (DM) to 
be 16.5%, corresponding to 6.5 million adults with DM in Turkey 
(ref. [3]). Compared to the TURDEP-l study performed 12 years 
earlier, there was a 3% increase in the prevalence of DM (ref. [3]). 
Currently the prevalence of DM is estimated to be nearly 20% in 
Turkey. These results, derived from the most extensive nationally 
representative surveys conducted to date, indicate that DM is one 
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of Turkey’s most complex and widespread public health 
challenges. Approximately 25-30% of DM patients develop some 
form of DR, with 3% experiencing a sight-threatening form of the 
disease (ref. [4]). Unfortunately, in Turkey the insufficient number 
of ophthalmologists and retina specialists poses a challenge in 
providing regular retinal screenings for these patients in need.

Certain countries have adopted telemedicine and national 
screening programs to increase compliance with the retinal 
examinations required for diagnosing and grading DR (ref. [5]). 
However, implementing a systematic diabetic retinopathy screen-
ing program faces financial and logistical difficulties, particularly 
in low and middle-income countries like Turkey. Moreover, the 
sheer size of the population adds complexity and difficulty to 
introducing a nationwide screening program. Consequently, 
there is a critical need to develop and validate a cost-effective 
screening method capable of screening large diabetic popula-
tions for DR.

The purpose of DR screening in diabetic patients is to ensure 
that patients at risk of vision loss can reach the ophthalmologist 
immediately. Recent studies have highlighted artificial intelli-
gence (AI) algorithms specializing in non-mydriatic posterior pole 
photographs as a potential solution. Studies on DR diagnosis 
using AI algorithms have been successfully done in different 
countries (ref. [6, 7]). Despite the utilization of AI applications in 
medicine at an academic level in Turkey, no AI algorithm is 
currently integrated into daily practice for diagnosing and 
grading DR.

This study evaluated the diagnosis and grading of DR, along 
with suspicion of clinically significant diabetic macular oedema, 
by employing the EyeCheckup AI software (EyeCheckup) (Ural 
Telecommunication Inc., Akdeniz University Teknokent, Antalya), 
and multiple non-mydriatic ophthalmic cameras. Fundus photo-
graphs from patients with diabetes mellitus (DM) were assessed 
by AI, and these results with those of three retina specialists who 
established the clinical reference standard using 4 wide-field 
fundus images.

PATIENTS AND METHODS
Nine hundred patients with DM diagnosis and without a known DR 
diagnosis who applied to Akdeniz University Endocrinology and Metabolic 
Diseases Department were included in the study. Ethics committees of 
Akdeniz University and the Ministry of Health of the Republic of Turkey 
approved the study.

The inclusion criteria of patients to participate in the study were as 
follows: 

1. Patients who had DM diagnosis and are followed by the 
endocrinology department.

2. Older than 18 years of age
3. No previous diagnosis of DR
4. Not having undergone intravitreal injection, laser photocoagula-

tion, or DR-related surgery.
5. Not having undergone an intraocular surgery, including cataract 

surgery
6. Had signed the informed consent form.
7. The absence of media opacity could affect the retina and optic disc 

photographic appearance.

Posterior pole images were obtained from the patients using three non- 
mydriatic fundus cameras; Canon CR2 AF, Topcon TRC-NW400, and 
Optomed Aurora. These images consisted of two wide field images per 
eye: one centred on the macula (Fig. 1a) and the other centred on the 
optic disc (Fig. 1b).

Two nurses were trained for approximately 4 h prior to the starting date 
of study on taking two wide field and 4 45 degree wide field fundus 
images (Fig. 1c) using 3 different cameras according to the camera 
manufacturer instruction manuals on subjects not included in the study. 
During the study, the nurses took optic disk-centred and macula-centred 
Fundus images using each of these cameras without dilation for a 
maximum of 5 attempts. If images of adequate quality could be obtained 

without dilation they were analysed using the EyeCheckup software. If the 
images were of insufficient quality after 5 attempts of non-mydriatic 
imaging, dilation was performed, and images captured again. Captured 
images were imported to EyeCheckup client software and evaluated by AI 
for the presence of DR. EyeCheckup AI software detected the pathological 
findings (hard exudates, microaneurysms, intraretinal haemorrhages, soft 
exudates, venous beading, neovascular vessels in the retina and optic 
disc, preretinal haemorrhage, and vitreous haemorrhage) from the 
patient’s fundus images. By evaluating the detected pathological findings, 
these patients were graded as No DR, Mild Non-proliferative DR (NPDR), 
Moderate NPDR, severe NPDR, and Proliferative DR (PDR), as recom-
mended by the American Academy of Ophthalmology (ref. [8]) (Fig. 2). If 
the patient had a DR severity greater than mild NPDR, they were graded 
as “more than mild DR (mtmDR)”. Patients with severe NPDR or PDR were 
graded as “vision-threatening DR (vtDR)” (ref. [6]). The more than mild 
diabetic retinopathy group of patients represents the patients that should 
be referred to an ophthalmologist in 6 months, and the vision threatening 
diabetic retinopathy group includes those at risk of serious vision loss, 
thus, should be referred as soon as possible (1–2 months). Historically 
based on the ETDRS studies (ref. [9]), CSDMO is defined as: 

● Retinal thickening at or within 500 μm of the centre of the fovea
● Hard exudates at or within 500 μm of the centre of the fovea if 

adjacent to an area of retinal thickening

However, since no OCT imaging was involved in this study, the 
suspicion of CSDMO was determined by surrogate biomarkers near the 
fovea. Based on the definition of CSDMO in AAO Diabetic Retinopathy 
Preferred Practice Patterns, the presence of a hard exudate/s in the 
macula was considered a clinically significant diabetic macular oedema 
(CSDMO) suspicion(ref. [10]). Patients suspected of clinically significant 
diabetic macular oedema were also classified as vision threatening 
diabetic retinopathy.

The subjects underwent dilation and, in addition to the existing two 
wide field images per eye captured for evaluation by EyeCheckup AI, an 
additional four quadrant 45 degree wide-field fundus images (Fig. 1c) 
were also taken from the patients using Canon CR2 AF 45-degree fundus 
cameras for evaluation by 3 retina specialists. A recent clinical study has 
shown substantial agreement in the ETDRS 7-Field (7 F) to 4 wide-field 
(4 W) digital imaging in the evaluation of diabetic retinopathy severity, 
demonstrating that the two imaging protocols are interchangeable. Both 
4 W and 7 F digital imaging protocols can be used for assessing ETDRS 
levels of DR, even in populations with minimal diabetic retinopathy (ref. 
[11]). Furthermore, multiple clinical studies show substantial equivalence 
of using two widefield images compared against 7 standard field images 
for Diabetic Retinopathy screening using artificial intelligence(refs. [6, 12]).

The four quadrant wide-field images showing the periphery and the 
previous two non-mydriatic images were evaluated by retina specialists 
(MED, YA, MB), and a consensus was reached for each eye from each 
patient. These diagnoses were accepted as ground truth in terms of 
definitive patient diagnosis. Classification on a patient basis was made by 
considering the more severe eye. The diagnoses produced by EyeCheckup 
and the ground truth established by the retinal specialists were 
compared. During the study the retina specialist and EyeCheckup were 
blinded to each other’s outputs. Different sensitivity and specificity ratios 
were calculated for each camera, and the severity of DR was diagnosed. 
Minimum success thresholds for clinical validation were determined as; 
85% for sensitivity and 82% for specificity.

EyeCheckup AI
EyeCheckup AI has been locally developed at Akdeniz University by the 
Ural Telecommunication Inc. company that has offered the software for 
evaluation with multiple cameras. At the time of the study EyeCheckup 
was the only software explicitly indicated for use with multiple camera 
models. The IFU for EyeCheckup software according to its CE certification 
documentation is:

EyeCheckup is indicated for use by healthcare providers to automatically 
detect mtmDR (more than mild diabetic retinopathy) and vtDR (vision- 
threatening diabetic retinopathy - severe non-proliferative diabetic retino-
pathy or proliferative diabetic retinopathy and/or diabetic macular oedema) 
in the eyes of adults (18 years of age or older) diagnosed with diabetes who 
have not been previously diagnosed with diabetic retinopathy.

EyeCheckup has been developed for use with retinal fundus images 
and is optimized with Canon CR-2 AF, Topcon TRC-NW400, and Optomed 
Aurora fundus cameras. EyeCheckup can visualize the detected anomalies 
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to help doctors understand how diabetic retinopathy detection 
was made.

Labelling of the pathologic findings for development of AI
For the detection of anomalies in fundus images, an object detection 
model was developed that was trained on annotated data. Anomalies 
were labelled using “Doctor Says” labelling software, an open-source tool 
designed for bounding box labelling, classification, and segmentation 
(Fig. 3). The labelling process involved identifying specific features in the 
fundus images that distinguish standard regions from abnormal regions. 
These features included colour, shape, and texture.

A team of retina experts manually annotated the images using the 
“Doctor Says” software and the labelling process’s accuracy was verified by 
cross-validation. The EyeCheckup AI was trained using both public and 
private images datasets which might contain both dilated and undilated 
images. These datasets were sorted and labelled by a team of retina 
specialists in collaboration with machine learning engineers who trained the 
algorithm. The dataset was enhanced using the undilated images captured 
using Canon CR2 AF, Topcon TRC-NW400, and Optomed Aurora from the 
patient population from the Akdeniz University Hospital Ophthalmology 
Clinic before the study started. A version locked copy of EyeCheckup AI was 
used in this study and no modification was made anyway including 
retraining before, in between after the study was completed.

Preprocessing
Preprocessing is a crucial step in computer vision that involves manipulat-
ing, enhancing, and refining raw input data to extract meaningful 
information effectively. It is a series of techniques and methods designed 
to optimize the images or videos for subsequent analysis, interpretation, 

and decision-making. In this context, several quality checks were 
conducted on the fundus images to ensure they were suitable for analysis.

It is crucial to discuss the importance of preprocessing in computer 
vision and why it is necessary for accurate and reliable results.

In the preprocessing phase of the study, several quality checks were 
employed to ensure that the fundus images were suitable for analysis. 
Firstly, a chromaticity test was implemented to verify whether the images 
were in colour, discarding those that did not meet this criterion. Secondly, 
a size threshold check was conducted, retaining only images that met or 
exceeded 1024 × 1024 pixels. A novel dynamic cropping algorithm was 
developed to rectify any irregularity in image dimensions that considered 
the retinal borders and automatically computed an appropriate crop 
offset. Only images that maintained a post-crop size greater than or equal 
to 1024 × 1024 pixels were deemed valid for further processing.

Additionally, an optic disc/fovea (ODF) detection model was employed 
to identify the ODF in each image. By extension, this model provided vital 
contextual information regarding the image orientation, i.e., whether it 
pertained to the right or left eye. Potential artifacts that could adversely 
impact the models’ performance were also addressed, such as partial 
blurring/darkening, eyelashes in the frame, blurring due to incorrect 
focus, etc. A quality scoring model was designed and trained to evaluate 
the images’ suitability for the study to mitigate such issues. Only those 
images that met this criterion were incorporated into the training and 
testing datasets.

EyeCheckup artificial intelligence training process
Approximately 350,000 fundus photographs were collected and evaluated 
by the quality evaluation model, the anomalies in the picture diagnosed 
as DR were annotated by the ophthalmologists using only the quality 
photographs. In the following process, the photos labelled according to 

Fig. 1 Fundus İmages taken from patients. a Non-mydriatic Fundus Images Centered on the Macula from Three Different Cameras. b Non- 
mydriatic Fundus Images Centered on the Optic Disc from Three Different Cameras.  c 4 Wide Field Imaging.
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the diseases were converted to the appropriate format in line with the 
models’ needs, and the training of models was trained with the proper 
architecture. In the training process, architectures were changed, and 
parameter optimizations were made according to the success of the 
models; according to the scores obtained from the training, the most 
successful model was selected.

EyeCheckup artificial intelligence test process
To comprehensively evaluate the effectiveness of the proposed method, 
the following metrics were adopted: sensitivity, specificity, and average 
precision.

True Positive (TP) is the number of positive samples that are correctly 
identified as positive samples; the number of true negatives (TN) is the 
number of negative samples that are correctly identified as negative 
samples, the number of false positives (FP) is the number of negative 
samples misidentified as positive samples, and the number of false 
negatives (FN) is the number of positive samples misidentified as negative 
samples.

The In this study, the primary objective was to determine the DR level 
of the patient. Converting the predicted anomalies to the DR level is done 
using the following algorithm using DR disease severity level recom-
mended by the American Academy of Ophthalmology where DR0, DR1, 
DR2, DR3, and DR4 generated by the software refer to No Apparent 

Fig. 2 DR severity scale according to american academy of ophthalmology diabetic retinopathy preferred practice pattern.

Fig. 3 Labelling with doctor says.
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Retinopathy, Mild NPDR, Moderate NPDR, Severe NPDR, and PDR 
respectively in the AAO PPP.

Sensitivity (true positive rate) refers to the probability of a positive test, 
conditioned on truly being positive. It is calculated as sensitivity = TP/ 
(TP + FN). Specificity (true negative rate) refers to the probability of a 
negative test, conditioned on truly being negative. It is calculated as 
specificity = TN/(TN + FP).

Statistical analysis
The primary endpoints used in this study for the validation of the 
EyeCheckup AI algorithm are sensitivity and specificity. The sensitivity and 
specificity values for each camera and disease type were calculated based 
on the presence or absence of disease as determined by the clinical 
reference standard and are presented in the following section. 
Furthermore, a diagnosability statistic was calculated for each camera 
type. Diagnosability is the ratio of the number of patients whose image 
quality was sufficient for the EyeCheckup software to make an analysis to 
the number of patients whose image quality was sufficient for the clinical 
reference standard to make an evaluation. Lastly, the ratio of patients 
which required dilation to capture adequate quality images for Eye-
Checkup usage has also been calculated. These results provide valuable 
insights into the diagnostic performance of these cameras and their 
potential use in clinical settings for screening and diagnosis of ocular 
diseases.

Two-Sided 95% Confidence Intervals are calculated using the Clopper 
Pearson Exact Binomial method from the RStudio software using the 
binomial test function.

Study demographics
900 patients were recruited at the endocrinology department of Akdeniz 
University Hospital, Antalya, Turkey. Thirty-five of the 900 patients who 
participated in the study were excluded based on the exclusion criteria. 
Fundus photographs from 865 patients were included in the study. The 
study consists of 900 participants, with almost an equal distribution of male 
(50.89%) and female (49.11%) participants. Most participants have Type 2 
diabetes (98.44%), with only a small proportion having Type 1 diabetes 
(1.56%). On average, participants have been living with diabetes for almost 
ten years (9.78 years), and the average age of participants is 58 years old. 
The average weight of participants is 81.52 kilograms, and the average 
height is 165.28 centimetres, resulting in an average BMI of 29.87. 
Approximately 3.89% of patients were deemed ineligible for the study, 
with the remaining 96.11% being eligible for inclusion. Understanding the 
demographic characteristics of the study population is crucial for interpret-
ing the study results and generalizing them to the larger Population Table 1.

Determination of sample size
The minimum required sample size was calculated 778, by evaluating 
whether the AI algorithm achieved a success rate of more than 90%, 
considering 5% Type-I error, 80% power, and different effect sizes listed 
below.

Given 
H0

Given 
H1

Target Actual Reject 
H0

Power N (P0) (P1) Alpha Alpha Beta If 
Z > =This

0,8033 5341 0,9000 0,9100 0,0500 0,0511 0,1967 1,6449

0,8002 2286 0,9000 0,9150 0,0500 0,0520 0,1998 1,6449

0,8015 1255 0,9000 0,9200 0,0500 0,0525 0,1985 1,6449

0,8004 778 0,9000 0,9250 0,0500 0,0530 0,1996 1,6449

0,8012 523 0,9000 0,9300 0,0500 0,0541 0,1988 1,6449

0,8047 376 0,9000 0,9350 0,0500 0,0545 0,1953 1,6449

0,8092 284 0,9000 0,9400 0,0500 0,0539 0,1908 1,6449

0,8076 212 0,9000 0,9450 0,0500 0,0565 0,1924 1,6449

0,8004 164 0,9000 0,9500 0,0500 0,0553 0,1996 1,6449

Statistical results
This study aimed to evaluate the diagnostic accuracy of three different 
cameras, Optomed Aurora, Canon CR2 AF, and Topcon TRC-NW400, to 
detect three common ocular anomalies: more than mild diabetic 
retinopathy, vision threatening diabetic retinopathy, and clinically 
significant diabetic macular oedema. The Optomed Aurora camera was 
used for 875 individuals, the Canon CR2 AF camera for 704 individuals, 
and the Topcon TRC-NW400 camera for 585 individuals. For the 
EyeCheckupAI software usage a maximum of 526 patients were dilated 
while being photographed by Topcon NW400 while the other cameras 
required fewer patients to be dilated, further details regarding dilation 
statistics can be viewed in Table 2.The Canon CR2 AF camera had a 
sensitivity and specificity of 95.65% / 95.92% for diagnosing more than 
mild DR, the Topcon TRC-NW400 had 95.19% / 96.46%, and the Optomed 
Aurora had 90.48% / 97.21%. For vision threatening diabetic retinopathy, 
the Canon CR2 AF had a sensitivity and specificity of 96.00% / 96.34%, the 
Topcon TRC-NW400 had 98.52% / 95.93%, and the Optomed Aurora had 
95.12% / 98.82%. For clinically significant diabetic macular oedema, the 
Canon CR2 AF had a sensitivity and specificity of 95.83% / 96.83%, the 
Topcon TRC-NW400 had 98.50% / 96.52%, and the Optomed Aurora had 
94.93% / 98.95%. The diagnosability of the patients using EyeCheckup 
software and Optomed, Canon CR2 AF and Topcon TRC-NW400 cameras 
were 96.57%, 100% and 100% respectively.

DISCUSSION
The use case of artificial intelligence in ophthalmology for 
diabetic retinopathy screening was comprehensively studied 
and validated during this study. The long-term benefit of AI- 
based solutions for diabetic retinopathy screening risk stratifica-
tion and the prognosis is clear (ref. [13]). With the increasing 
burden of vision loss due to diabetic retinopathy, AI technology 
can increase the productivity of existing diabetic retinopathy 
teleophthalmology screening programs managed by trained 
human graders and ophthalmologists using collaborative semi- 
automatic models to provide human and machine care (refs. [14, 
15]). Since the publication of Abramoff et al.‘s results in 2008, 
automatic retinal image analysis systems utilizing deep learning 
algorithms have been developed successfully for detecting 
diabetic retinopathy based on colour digital retinal images (ref. 
[7]).

Another comparative study of deep learning versus human 
graders for classifying diabetic retinopathy severity where the 
deep learning algorithm had significantly higher sensitivity (0.97 
vs. 0.74, p < 0.001) and a slightly lower specificity (0.96 vs. 0.98, 
p < 0.001 (ref. [16])). Auto-grading has also been achieved at lower 

Table 1. Study population characteristics for non-mydriatic fundus 
camera diabetic retinopathy screening trial.

Study population demographics

Total Study Population 900

Male (%) 458 (50.89%)

Female (%) 442 (49.11%)

Diabetes Type 1 (%) 14 (1.56%)

Diabetes Type 2 (%) 886 (98.44%)

Diabetes Duration in Years (Average) 9.78

Diabetes Duration (Standard Deviation) 8.07

Age in Years (Average) 58.33

Age (Standard Deviation) 11.16

Weight in Kilograms (Average) 81.52

Weight (Standard Deviation) 15.70

Height in Centimetres (Average) 165.28

Height (Standard Deviation) 15.70

BMI (Average) 29.87

BMI (Standard Deviation) 5.37

Ineligible Patients (%) 35 (3.89%)

Eligible Patients (%) 865 (96.11%)
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costs when compared to human grading (ref. [17]). Looking at the 
results of this study which was conducted in a large diabetic 
population without DR diagnosis, we see that the success 
thresholds determined before grading of DR and suspicion of 
clinically significant diabetic macular oedema for the Sensitivity 
and specificity were significantly exceeded (respectively 85% and 
82.5%).

When the more than mild diabetic retinopathy diagnosis 
success of the EyeCheckup AI algorithm is evaluated with multiple 
cameras in consideration, the sensitivity recorded was 91% and 
above; the Specificity was recorded to be 96% and above for 
more than mild diabetic retinopathy; these diabetic patients 
require eye care outside of the regular yearly screening. A referral 
to an ophthalmologist can be made early due to the system’s 
high sensitivity and specificity.

When evaluating the vision threatening diabetic retinopathy 
diagnosis accuracy of the EyeCheckup AI software with multiple 
cameras used, the sensitivity was calculated to be 95% and above, 

and the specificity was estimated at 96% and above. Vision 
threatening diabetic retinopathy represents the group of diabetic 
patients who face the risk of vision loss. The high success 
achieved in diagnosis suggests that vision loss can be prevented 
by early referral in some of the patients.

When the patients with suspected clinically significant diabetic 
macular oedema are evaluated, we see that the sensitivity of the 
EyeCheckup AI algorithm is 95% and above, and specificity is 96% 
and above on all cameras. Referral of patients with suspected 
clinically significant diabetic macular oedema to an ophthalmol-
ogist for further examination and treatment may prevent vision 
loss or allow the loss of sight to return.

When these results are compared with other artificial intelli-
gence studies used to classify diabetic retinopathy, such as 
Multicenter, Head-to-Head, Real-World Validation Study of Seven 
Automated Artificial Intelligence Diabetic Retinopathy Screening 
Systems; the sensitivity ranged from 50.98 to 85.90%, specificity 
from 60.42 to 83.69%. It has been argued that DR diagnostic 

Table 2. Non-mydriatic fundus cameras for diabetic retinopathy screening: performance metrics.

Optomed aurora (study 
population = 875)

mtmDR vtDR CSDMO

Sensitivity (114/126) (78/82) (75/79)

90.48% 95.12% 94.93%

[0.8395–0.9498] [0.8798–0.9865] [0.8754–0.9860]

Specificity (699/719) (754/763) (758/766)

97.21% 98.82% 98.95%

[0.95737–0.9829] [0.9777–0.9946] [0.9795–0.9955]

Accuracy 96.20% 98.40% 98.50%

Diagnosability 845/875

96.57%

Dilation for EyeCheckup Usage 526/845

62.24%

Canon CR2 AF (Study Population = 704)

Sensitivity (110/115) (72/75) (69/72)

95.65% 96.00% 95.83%

[0.9015–0.9857] [0.8875–0.9917] [0.8830–0.9913]

Specificity (565/589) (606/629) (612/632)

95.92% 96.34% 96.83%

[0.9300–0.9737] [0.9456–0.9767] [0.9515–0.9806]

Accuracy 95.80% 96.30% 96.70%

Diagnosability 704/704+
100%

Dilation for EyeCheckup Usage 217/704

30.82%

Topcon NW400 (Study Population = 585)

Sensitivity (99/104) (67/68) (66/67)

95.19% 98.52% 98.50%

[0.8914–0.9842] [0.9208–0.9996] [0.9196–0.9996]

Specificity (464/481) (496/517) (499/517)

96.46% 95.93% 96.52%

[0.9440–0.9793] [0.9386–0.9747] [0.9455–0.9792]

Accuracy 96.20% 96.20% 96.50%

Diagnosability 585/585

100%

Dilation for EyeCheckup Usage 459/585

78.46%
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algorithms can show significant performance differences (refs. 
[18, 19]). The breakthrough FDA-approved artificial intelligence 
study included 900 patients without DRP history in primary care 
clinics and found a sensitivity of 87.2% and specificity of 90.7% 
(ref. [6]). When we look at these results, it can be concluded that 
the AI algorithm studied in this study is far more accurate than 
any others studied before.

Sensitivity and specificity are critical endpoints in assessing the 
reliability of an AI algorithm for detecting diabetic retinopathy. 
While sensitivity ensures that patients at risk of vision loss due to 
DR are referred to an ophthalmologist for further diagnosis and 
treatment, specificity aims to minimize the referral of patients 
who do not have DR or are in the very early stages of the disease. 
By optimizing both sensitivity and specificity, the unnecessary 
patient burden on physicians can be reduced, thereby benefiting 
patients both in terms of time and financial resources. The 
EyeCheckup AI-assisted diagnosis system has the potential to 
offer early diagnosis and treatment for diabetic retinopathy in 
patients who are unable to reach an ophthalmologist. By 
detecting the disease early on, the system can help prevent 
vision loss resulting from complications of DR. Moreover, 
physicians lacking expertise in DR follow-up can utilize the 
software to determine which patients require further examination 
and treatment. In this way, the EyeCheckup AI-assisted diagnosis 
system holds significant promise in improving the overall quality 
of care for diabetic patients.

This study has several noteworthy strengths. First and foremost, 
it includes a vast sample size from the intended use. Additionally, 
various non-mydriatic cameras, including a handheld camera, 
were used alongside the AI algorithm to diagnose and grade 
diabetic retinopathy and identify cases of suspected clinically 
significant diabetic macular oedema (CSDMO). Moreover, the 
diagnoses generated by the AI were compared to those made by 
retinal specialists, ensuring a high degree of accuracy and 
reliability in the study’s findings. This study replicated real-life 
conditions within an endocrinology clinic. Patients who had not 
yet been diagnosed with diabetic retinopathy were identified and 
subsequently referred to the department of ophthalmology for 
further examination and treatment using an AI solution alongside 
retina specialists.

A limitation of this study is that suspected cases of clinically 
significant diabetic macular oedema (CSDMO) were evaluated 
solely through the retinal fundus. If optical coherence tomogra-
phy (OCT) had been used, the sensitivity and specificity of the 
clinically significant diabetic macular oedema diagnosis rather 
than suspicion could have been assessed. Nonetheless, it is 
essential to note that the clinically significant diabetic macular 
oedema suspicion results in this study are primarily based on 
pathological findings, and a definitive diagnosis cannot be made 
through photographic evaluation alone. Regardless of this 
limitation, this study does highlight a valuable outcome for 
clinics with limited access to OCT technology.

CONCLUSION
The EyeCheckup AI model alongside non-mydriatic fundus 
imaging exhibits adequately high accuracy, sensitivity and 
specificity in diagnosing diabetic retinopathy and detecting 
clinically significant diabetic macular oedema (CSDMO) through 
fundus photographs taken by various non-mydriatic cameras as 
was demonstrated in this study. The software performed 
relatively well compared to diagnosis provided by a panel of 3 
retina specialists which was used as the ground truth for this 
study. This robust performance establishes the model as a reliable 
asset for real-world diabetic retinopathy screening, empowering 
eye care professionals to deliver more precise and swift 
diagnoses. Additionally, research indicates that the AI’s analysis 
of two-field non-mydriatic fundus photographs is comparable to 

the diagnostic proficiency of retina specialists using dilated four 
widefield or seven standard field images. These findings highlight 
the promising potential of AI algorithms in screening diabetic 
patients who require prompt examination and perhaps treatment 
by an ophthalmologist, thereby enabling early intervention and 
improved care.

SUMMARY

What was known before

● Differences in diagnostic performance of three non-mydriatic 
cameras for Diabetic Retinopathy Screening with Artificial 
Intelligence were unknown

What this study adds

● It has been found that there are some differences between 
the diagnostic performance of the three non-mydriatic 
cameras for Diabetic Retinopathy Screening with Artificial 
Intelligence
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