Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visual field progression patterns in the ocular hypertension treatment study correspond to vulnerability regions of the disc

Abstract

Objectives

To determine the locations on the 24-2 visual field (VF) testing grid that are most likely to progress in patients with ocular hypertension (OHTN). Based on a structural model of superior and inferior areas of relative vulnerability at the optic disc, we hypothesized that the nasal and paracentral regions are more prone to show a reduction in sensitivity.

Methods

Posthoc analysis of data collected in phases 1 and 2 of the Ocular Hypertension Treatment Study (OHTS). A pointwise analysis was applied to determine the progression patterns in the early and delayed treatment groups. Each group’s progression rate and frequency were calculated for each of the 52 locations corresponding to the 24-2 VF strategy, using trend- and event-based analyses, respectively.

Results

For the event-based analysis, the events were most commonly found in the nasal and paracentral regions. The same regions, with some modest variation, were found to have the fastest rates of progression (ROP) measured with trend analysis. A similar pattern of progression was observed in both the early and delayed treatment groups. The difference in event rates and ROP between the early and delayed treatment groups was also greatest in the nasal and paracentral regions.

Conclusions

Development of VF loss in ocular hypertensive eyes appears to be consistent with the vulnerability zones previously described in glaucomatous eyes with established VF loss. Ocular hypotensive treatment likely helps to slow the rate of progression in these regions. This suggests that careful monitoring of these locations may be useful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The vulnerability zones model.
Fig. 2: Overview of the collected visual field data.
Fig. 3: Event based analysis.
Fig. 4: Trend based analysis.
Fig. 5: Treatment effect.

Similar content being viewed by others

Data availability

Data is available and will be provided upon reasonable request.

References

  1. Hood DC, Wang DL, Raza AS, de Moraes CG, Liebmann JM, Ritch R. The locations of circumpapillary glaucomatous defects seen on frequency-domain OCT scans. Invest Ophthalmol Vis Sci. 2013;54:7338. https://doi.org/10.1167/iovs.13-12680.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nouri-Mahdavi K, Hoffman D, Tannenbaum DP, Law SK, Caprioli J. Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol. 2004;137:228–35. https://doi.org/10.1016/j.ajo.2003.09.004.

    Article  PubMed  Google Scholar 

  3. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55. https://doi.org/10.1016/j.ajo.2004.08.069.

    Article  PubMed  Google Scholar 

  4. Kanamori A, Nakamura M, Escano MFT, Seya R, Maeda H, Negi A. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol. 2003;135:513–20. https://doi.org/10.1016/s0002-9394(02)02003-2.

    Article  PubMed  Google Scholar 

  5. Budenz DL, Michael A, Chang RT, McSoley J, Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology. 2005;112:3–9. https://doi.org/10.1016/j.ophtha.2004.06.039.

    Article  PubMed  Google Scholar 

  6. Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86:1803–30. https://doi.org/10.1016/s0161-6420(79)35338-6.

    Article  CAS  PubMed  Google Scholar 

  7. Hood DC. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Prog Retin Eye Res. 2017;57:46–75. https://doi.org/10.1016/j.preteyeres.2016.12.002.

    Article  PubMed  Google Scholar 

  8. Gordon MO. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714. https://doi.org/10.1001/archopht.120.6.714.

    Article  PubMed  Google Scholar 

  9. Asman P, Heijl A. Glaucoma Hemifield Test. Automated visual field evaluation. Arch Ophthalmol. 1992;110:812–9. https://doi.org/10.1001/archopht.1992.01080180084033.

    Article  CAS  PubMed  Google Scholar 

  10. Gordon MO. The ocular hypertension treatment study: design and baseline description of the participants. Arch Ophthalmol. 1999;117:573. https://doi.org/10.1001/archopht.117.5.573.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson CA, Keltner JL, Cello KE, Edwards M, Kass MA, Gordon MO, et al. Baseline visual field characteristics in the ocular hypertension treatment study. Ophthalmology. 2002;109:432–7. https://doi.org/10.1016/s0161-6420(01)00948-4.

    Article  PubMed  Google Scholar 

  12. Keltner JL, Johnson CA, Cello KE, Edwards MA, Bandermann SE, Kass MA, et al. Classification of visual field abnormalities in the ocular hypertension treatment study. Arch Ophthalmol. 2003;121:643–50. https://doi.org/10.1001/archopht.121.5.643.

    Article  PubMed  Google Scholar 

  13. De Moraes CG, Demirel S, Gardiner SK, Liebmann JM, Cioffi GA, Ritch R, et al. Effect of treatment on the rate of visual field change in the ocular hypertension treatment study observation group. Invest Ophthalmol Vis Sci. 2012;53:1704. https://doi.org/10.1167/iovs.11-8186.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wild JM, Pacey IE, Hancock SA, Cunliffe IABetween-algorithm. between-individual differences in normal perimetric sensitivity: full threshold, FASTPAC, and SITA. Swedish Interactive Threshold algorithm. Invest Ophthalmol Vis Sci. 1999;40:1152–61.

    CAS  PubMed  Google Scholar 

  15. Budenz DL, Rhee P, Feuer WJ, McSoley J, Johnson CA, Anderson DR. Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms. Arch Ophthalmol. 2002;120:1136–41. https://doi.org/10.1001/archopht.120.9.1136.

    Article  PubMed  Google Scholar 

  16. Jansonius NM, Schiefer J, Nevalainen J, Paetzold J, Schiefer U. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye: average course, variability, and influence of refraction, optic disc size and optic disc position. Exp Eye Res. 2012;105:70–8. https://doi.org/10.1016/j.exer.2012.10.008.

    Article  CAS  PubMed  Google Scholar 

  17. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available at: https://www.R-project.org/.

  18. Wickham H, François R, Henry L, Müller K. Dplyr: A grammar of data manipulation.; 2019. Available at: https://CRAN.R-project.org/package=dplyr.

  19. Wickham H, Henry L. Tidyr: Easily tidy data with ’spread()’ and ’gather()’ functions.; 2019. Available at: https://CRAN.R-project.org/package=tidyr.

  20. Wickham H, Chang W, Henry L, Pedersen TL Takahashi K, Wilke C, et al. Ggplot2: Create elegant data visualizations using the grammar of graphics.; 2019. Available at: https://CRAN.R-project.org/package=ggplot2.

  21. Wilke CO. Cowplot: Streamlined plot theme and plot annotations for ’ggplot2’.; 2019. Available at: https://CRAN.R-project.org/package=cowplot.

  22. Xie Y. Knitr: A general-purpose package for dynamic report generation in r.; 2019. Available at: https://CRAN.R-project.org/package=knitr.

  23. Xie Y. Bookdown: Authoring books and technical documents with r markdown.; 2018. Available at: https://CRAN.R-project.org/package=bookdown.

  24. Germano RAS, Germano CS, Susanna FN, Susanna R. Patterns of visual field loss in early, moderate, and severe stages of open angle glaucoma. J Glaucoma. 2022;31:609–13. https://doi.org/10.1097/IJG.0000000000001986.

    Article  PubMed  Google Scholar 

  25. Werner EB, Beraskow J. Peripheral nasal field defects in glaucoma. Ophthalmology. 1979;86:1875–8. https://doi.org/10.1016/s0161-6420(79)35335-0.

    Article  CAS  PubMed  Google Scholar 

  26. Lau LI, Liu CJling, Chou JCK, Hsu WM, Liu JH. Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity. Ophthalmology. 2003;110:1890–4. https://doi.org/10.1016/S0161-6420(03)00666-3.

    Article  PubMed  Google Scholar 

  27. Bonomi L, Marraffa M, Marchini G, Canali N. Perimetric defects after a single acute angle-closure glaucoma attack. Graefes Arch Clin Exp Ophthalmol. 1999;237:908–14. https://doi.org/10.1007/s004170050385.

    Article  CAS  PubMed  Google Scholar 

  28. Park SC, De Moraes CG, Teng CCW, Tello C, Liebmann JM, Ritch R. Initial Parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011;118:1782–9. https://doi.org/10.1016/j.ophtha.2011.02.013.

    Article  PubMed  Google Scholar 

  29. Park SC, Kung Y, Su D, Simonson JL, Furlanetto RL, Liebmann JM, et al. Parafoveal scotoma progression in glaucoma. Ophthalmology. 2013;120:1546–50. https://doi.org/10.1016/j.ophtha.2013.01.045.

    Article  PubMed  Google Scholar 

  30. De Moraes CG, Sun A, Jarukasetphon R, Rajshekhar R, Shi L, Blumberg DM, et al. Association of macular visual field measurements with glaucoma staging systems. JAMA Ophthalmol. 2019;137:139–45. https://doi.org/10.1001/jamaophthalmol.2018.5398.

    Article  PubMed  Google Scholar 

  31. Schiefer U, Papageorgiou E, Sample PA, Pascual JP, Selig B, Krapp E, et al. Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci. 2010;51:5685–9. https://doi.org/10.1167/iovs.09-5067.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heijl A, Lundqvist L. The frequency distribution of earliest glaucomatous visual field defects documented by automatic perimetry. Acta Ophthalmol. 1984;62:658–64. https://doi.org/10.1111/j.1755-3768.1984.tb03979.x.

    Article  CAS  Google Scholar 

  33. Hood DC, La Bruna S, Tsamis E, Leshno A, Melchior B, Grossman J, et al. The 24-2 visual field guided progression analysis can miss the progression of glaucomatous damage of the macula seen using OCT. Ophthalmol Glaucoma. 2022;5:614–27. https://doi.org/10.1016/j.ogla.2022.03.007.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pathak M, Demirel S, Gardiner SK. Nonlinear trend analysis of longitudinal pointwise visual field sensitivity in suspected and early glaucoma. Trans Vis Sci Tech. 2015;4:8 https://doi.org/10.1167/tvst.4.1.8.

    Article  Google Scholar 

  35. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114:1965–72. https://doi.org/10.1016/j.ophtha.2007.03.016.

    Article  PubMed  Google Scholar 

  36. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol. 2000;130:429-40. https://doi.org/10.1016/s0002-9394(00)00538-9.

  37. Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK. CIGTS Study Investigators. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. Ophthalmology. 2009;116:200–7. https://doi.org/10.1016/j.ophtha.2008.08.051.

    Article  PubMed  Google Scholar 

  38. Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I, et al. The European glaucoma prevention study design and baseline description of the participants. Ophthalmology. 2002;109:1612–21. https://doi.org/10.1016/s0161-6420(02)01167-3.

    Article  PubMed  Google Scholar 

  39. Medeiros FA, Weinreb RN, Zangwill LM, Alencar LM, Sample PA, Vasile C, et al. Long-term intraocular pressure fluctuations and risk of conversion from ocular hypertension to glaucoma. Ophthalmology. 2008;115:934–40. https://doi.org/10.1016/j.ophtha.2007.08.012.

    Article  PubMed  Google Scholar 

  40. Folgar FA, de Moraes CGV, Prata TS, Teng CC, Tello C, Ritch R, et al. Glaucoma surgery decreases the rates of localized and global visual field progression. Am J Ophthalmol. 2010;149:258–264.e2. https://doi.org/10.1016/j.ajo.2009.09.010.

    Article  PubMed  Google Scholar 

  41. Kass MA, Gordon MO, Gao F, Heuer DK, Higginbotham EJ, Johnson CA, et al. Delaying treatment of ocular hypertension: the ocular hypertension treatment study. Arch Ophthalmol. 2010;128:276–87. https://doi.org/10.1001/archophthalmol.2010.20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported in part by the Jane and David Walentas Glaucoma Research Fund, Columbia University Department of Ophthalmology; an unrestricted grant to the Department of Ophthalmology, Columbia University Department of Ophthalmology from Research to Prevent Blindness, Inc., New York, NY USA; and Schur Family Glaucoma Fellowship (AL), Columbia University Department of Ophthalmology.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NB, CGDM, JML; Data curation: NB, CGDM, JML, MOG, MAK; Formal analysis: AL, CGDM, NB; Investigation: AL, CGDM, JML, NB; Methodology: AL, JML, CGDM, MOG, MAK, GAC; Project administration: AL, JML, CGDM; Resources: GAC, CGDM and JML; Supervision: JML, GAC and CGDM; Validation: CGDM, MOG, MAK, GAC, JML; Writing – original draft: AL, JML, NB, CGDM; Writing - review & editing: AL, JML, NB, MOG, MAK, GAC, JML.

Corresponding author

Correspondence to Carlos Gustavo De Moraes.

Ethics declarations

Competing interests

Carlos G. De Moraes: Carl Zeiss Meditec, Inc. (C); Novartis (C); Heidelberg Engineering (R); Topcon (F); Galimedix (C); Perfuse Therapeutics (C); Ora Clinical, Inc. (E) Jeffrey M. Liebmann: Novartis (R), Alcon (C), Allergan (C), Genentech (C), Thea (C).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leshno, A., Bommakanti, N., De Moraes, C.G. et al. Visual field progression patterns in the ocular hypertension treatment study correspond to vulnerability regions of the disc. Eye 38, 1549–1555 (2024). https://doi.org/10.1038/s41433-024-02949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-024-02949-x

Search

Quick links