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BACKGROUND/OBJECTIVE: Pathologic myopia (PM) is a major cause of severe visual impairment and blindness, and
current applications of artificial intelligence (AI) have covered the diagnosis and classification of PM. This meta-analysis
and systematic review aimed to evaluate the overall performance of AI-based models in detecting PM and related
complications.
METHODS: We searched PubMed, Scopus, Embase, Web of Science and IEEE Xplore for eligible studies before Dec 20, 2022.
The methodological quality of included studies was evaluated using the Quality Assessment for Diagnostic Accuracy Studies
(QUADAS-2). We calculated the pooled sensitivity (SEN), specificity (SPE) and the summary area under the curve (AUC) using a
random effects model, to evaluate the performance of AI in the detection of PM based on fundus or optical coherence
tomography (OCT) images.
RESULTS: 22 studies were included in the systematic review, and 14 of them were included in the quantitative analysis. Of all
included studies, SEN and SPE ranged from 80.0% to 98.7% and from 79.5% to 100.0% for PM detection, respectively. For the
detection of PM, the summary AUC was 0.99 (95% confidence interval (CI) 0.97 to 0.99), and the pooled SEN and SPE were 0.95
(95% CI 0.92 to 0.96) and 0.97 (95% CI: 0.94 to 0.98), respectively. For the detection of PM-related choroid neovascularization
(CNV), the summary AUC was 0.99 (95% CI: 0.97 to 0.99).
CONCLUSION: Our review demonstrated the excellent performance of current AI algorithms in detecting PM and related
complications based on fundus and OCT images.
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INTRODUCTION
Myopia is increasingly prevalent worldwide and has become a
serious challenge for public health. The global prevalence of
myopia (≥–0.5 D) is approximately 2 billion and is predicted to be
4.76 billion (49.8% of the world population) by 2050 [1]. At the
same time, high myopia (≥–6.0 D) has become increasingly
prevalent in recent decades, especially in Asian countries, and has
developed from an earlier age [2]. Pathologic myopia (PM) is a
major cause of severe visual impairment and is defined as a
special category of myopia associated with excessive axial
elongation leading to structural changes in the posterior segment
of the eye, such as posterior staphyloma and myopic macular
degeneration (MMD), and loss of best corrected visual acuity in
International Classification of Diseases 11th Revision (ICD-11) [3].
PM has been estimated to affect 3% of the global population and
will lead to great potential productivity loss and a high economic
burden on the healthcare system [4]. As a consequence, it is
necessary to timely identify PM eyes and prevent the progression
of visual impairment.
Recent studies have proven high accuracy, sensitivity (SEN) and

specificity (SPE) of artificial intelligence (AI) systems integrated in
ophthalmology imaging, especially the subfield of deep learning
(DL). Multiple successful algorithms have been developed for

screening and assisted diagnosis of diabetic retinopathy (DR),
glaucoma and age-related degeneration (AMD), and myopia [5].
The current applications of AI in myopia cover a variety of aspects,
including the diagnosis and classification of PM, prediction of
progression and guidance of refractive surgery; meanwhile,
imaging modality with which the algorithms were developed
has also developed from fundus images to optical coherence
tomography (OCT) images.
There are still relatively great variations among studies in

development procedures, databases, sample resources and many
aspects of methodology. Thus, a detailed assessment of AI
performance is needed to quantify the overall accuracy and
generalizability and identify the confounding factors of the
findings. Recently, meta-analysis and systematic reviews about
the diagnostic performance of AI in detecting AMD, glaucoma and
diabetic macular oedema (DMO) have been published, while there
is still no comprehensive investigation on the performance of AI
for the detection of PM [6–8].

Aims of the study
We conducted this meta-analysis and systematic review to
evaluate the overall performance of AI-based models in detecting
PM and PM-related CNV based on fundus and OCT images, and
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explore the underlying factors affecting the accuracy and
acceptability of algorithms and discuss the limitations and future
steps of AI applications in PM.

METHODS
The protocol for this systematic review was registered in PROSPERO
(CRD42022379136) and this review was conducted according to the
PRISMA statement recommendations.

Search strategy and selection criteria
We searched PubMed, Scopus, Embase, Web of Science and IEEE Xplore for
eligible studies published up to Dec 20, 2022, using the combination of
search terms associated with PM (e.g., myopia, high myopia and
pathologic myopia) crossed with search terms associated with AI (e.g.,
artificial intelligence, machine learning and deep learning) in the full text.
Full search terms were listed in online Supplementary Appendix 1. We also
searched the reference lists of included literature to identify potentially
eligible studies. The language was limited to English.
Two researchers (HL, JRZ) independently screened the titles and

abstracts for eligible literature according to the selection criteria. The
eligible studies were further selected with a full-text review after removing
duplications. The inclusion criteria were as follows: (1) journal articles or
conference papers reporting the primary outcome of the performance of
the AI algorithm in the detection of patients with PM; (2) the definition or
reference standard for PM were clearly defined; (3) a clear description of
the procedure developing algorithms and detailed information about the
database were reported; (4) necessary data or evaluation indices were
reported to calculate the absolute numbers of true positive (TP), false
positive (FP), false negative (FN), and true negative (TN), such as SEN, SPE,
accuracy and area under the receiver operating characteristic curve (AUC).
The exclusion criteria were as follows: (1) publication forms of case

reports, reviews, comments, letters and editorials; unpublished or ongoing
research; (2) studies that detected PM based on imaging methods other
than fundus or OCT images; (3) studies that did not report necessary data
of the primary outcome.

Risk of bias assessment and data extraction
Quality assessment of eligible articles was performed by two reviewers (YZ,
HL) independently using the Quality Assessment of Diagnostic Accuracy
Studies-2 (QUADAS-2) tool. Any disagreement was resolved by discussion
with a senior researcher (XBY) for consensus. The QUADAS-2 tool consists
of 4 aspects of assessment: patient selection, index test, reference
standard, and flow and timing [9]. All included studies were evaluated
for the risk of bias for all 4 aspects and the applicability for the former 3
aspects. The risk of each study was classified into low, high and clear risk of
bias, and studies with a high risk of bias or low quality were excluded from
our study.
Data were extracted in all eligible full-text studies by two reviewers (YZ,

JNW) independently, and the following data were collected if available: the
first author; country; publication year; characteristics of datasets (dataset
type; total number of images; imaging modality); characteristics of
algorithms (types of algorithms, outcome of classification); evaluation
indices of the algorithm accuracy derived from internal or external validation
datasets, including SEN, SPE, accuracy, AUC, positive likelihood ratio (PLR),
negative likelihood ratio (NLR) and diagnostic odds ratio (DOR). The results
from different validation datasets in the same study were considered
independent data. If the data of evaluation indices were insufficient to
calculate the 2-by-2 table for the outcomes of validation, the study was not
included in the meta-analysis but only for literature review.
We defined PM as eyes with maculopathy based on fundus images not

less than category two or with “plus” features according to Meta-analysis
for Pathologic Myopia (META-PM) study classification [3, 10]. Another
system considering the three most crucial myopic lesions was the atrophy,
traction, and neovascularization (ATN) grading system based on OCT
images (Supplementary Appendix 2) [11]. In particular, as choroidal
neovascularization (CNV) is a leading cause of vision impairment of PM and
should receive timely referrals, we further evaluated the performance of
the included algorithms in the detection of CNV in PM eyes (if available).

Statistical analysis
We used the RevMan 5.3 platform (Cochrane Collaboration, Denmark) to
conduct quality assessment for all included studies. Next, Stata version

17.0 MP (StataCorp) was applied to perform all the analyses, and a 2-tailed
P < 0.05 was considered statistically significant. We applied random-effects
models to combine the included studies. The pooled quantitative analysis
of indicators for diagnostic performance was performed, including SEN,
SPE, PLR, NLR, and DOR, with results shown in forest plots with 95%
confidence interval (CI). The I2 statistic was used to assess heterogeneity
among studies (25–49%: low heterogeneity; 50–74%: moderate hetero-
geneity; and more than 75%: high heterogeneity). To avoid threshold
effects, we adopted a hierarchical summary receiver operating character-
istic (HSROC) model to assess the relationship between SEN and SPE and
plotted the summary receiver operating characteristic (SROC) curves with
95% CIs and prediction regions.
Meta-regression was performed to investigate the reasons for the

heterogeneity among studies. For subgroup analysis, the following
covariates were considered: research regions (developing countries and
developed countries); different types of validation datasets (internal and
external validation datasets); imaging modalities (fundus and OCT images);
types of datasets (public and hospital datasets); and total number of
images (<5000 and ≥5000). The direction of subgroup analysis was not a
priori due to unclear hypothesized direction. Furthermore, we conducted
sensitivity analysis to estimate the robustness and reliability of our analysis
and assessed publication bias with Deek’s plot. The sensitivity analysis was
the repeat of the primary meta-analysis, after excluding studies with high
or unclear risk of bias.

RESULTS
Search results and study characteristics
Initially, our literature search identified 1036 studies, and
587 studies were screened after the removal of duplicated
records. Figure 1 shows the flowchart of the literature eligibility
process. Finally, 22 studies were included for systematic review
[12–33], and 14 of them were included for quantitative meta-
analysis [12, 13, 16, 19–23, 26, 27, 29–31, 33].
The characteristics of all eligible studies are summarized in

Table 1. In total, 348,861 fundus images and 22,560 OCT images
were used for training, testing and validation. Of all included
studies, SEN and SPE ranged from 80.0% to 98.7% and from 79.5%
to 100.0% for PM detection, respectively. Two categories (PM and
non-PM) were exported as the primary outcome in 14 studies
(63.6%); 5 categories (META-PM) of PM were exported in 4 studies
(18.2%); and 3 categories (ATN) of PM were exported in 1 study
(4.6%). The remaining 6 studies (27.3%) identified specific PM-
related lesions (CNV, myopic traction maculopathy, retinal
detachment, etc).
Most studies (n= 20, 90.9%) applied convolutional neural

network (CNN) to develop algorithms, of which 12 studies
used ResNet. There was also 1 study using support
vector machine (SVM) and 1 study using Adaboost. 16 studies
(72.7%) obtained images from hospitals, and 6 studies (27.3%)
from public databases, of which the PathologicAL Myopia (PALM)
database was the most frequently adopted public database
(n= 4, 18.2%).

Risk of bias assessment and publication bias
We assessed the quality of all included studies using the QUADAS-2
tool, and the results are presented in Supplementary Appendix 3.
7 studies (31.8%) were graded as having a low risk of bias in all 4
domains [16, 18, 20, 26–28, 33]. 12 studies (54.5%) had at least one
domain with applicability concerns [14, 15, 17, 19, 21, 22, 24, 25, 29–32].
For patient selection, 12 studies (54.5%) were graded as having an
unclear risk of bias because of the lack of a clear description of public
datasets, and 12 studies (54.5%) had unclear applicability concerns due
to unavailable composition information. For the index test, most
studies (n= 16, 72.7%) had a low risk of bias and concern of
applicability, and only 6 studies (27.3%) were graded with an unclear
risk of bias due to underlying data overlap among datasets. For the
reference standard, the risk of bias and concern of applicability were
low in all included studies. Finally, for the flow and timing domain,
8 studies (36.4%) had unclear risk of bias considering the unclear
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construction procedure of public datasets. No publication bias existed
(P= 0.10) by Deek’s funnel plot asymmetry test, shown in Supple-
mentary Appendix 4. Furthermore, we assessed and confirmed the low
credibility of our meta-analysis using Instrument for assessing the
Credibility of Effect Modification Analyses (ICEMAN), shown in
Supplementary Appendix 5.

Meta-analysis for the performance of AI in PM and PM-CNV
detection
For the detection of PM, the forest plots of SEN, SPE and 95% CIs
for the included studies are shown in Fig. 2A, B
[13, 16, 19, 20, 22, 23, 27, 29–31]. Using the HSROC model, we
obtained the SROC curve with a 95% confidence region and
prediction region (Fig. 2C). The summary AUC was 0.99 (95% CI:
0.97 to 0.99), and the pooled SEN, SPE, PLR, NLR, and DOR were
0.95 (95% CI: 0.92 to 0.96), 0.97 (95% CI: 0.94 to 0.98), 28.1 (95% CI:
15.8 to 50.2), 0.06 (95% CI: 0.04 to 0.08), and 495 (95% CI: 243 to
1008), respectively. For the detection of PM-CNV, the forest plots
for the included studies and the SROC curve plot are shown in
Fig. 3 [12, 13, 21, 26, 33]. The summary AUC was 0.99 (95% CI: 0.97
to 0.99), and the pooled SEN, SPE, PLR, NLR, and DOR were 0.94
(95% CI: 0.90 to 0.97), 0.96 (95% CI: 0.94 to 0.98), 25.9 (95% CI: 16.1
to 41.7), 0.06 (95% CI: 0.03 to 0.10), and 435 (95% CI: 220 to 860),
respectively.

Heterogeneity analysis and meta-regression analysis
Since high heterogeneity (I2 > 50) was found in our forest plots
when assessing the SEN and SPE for the detection of PM, we
performed meta-regression to explore the potential reasons for
heterogeneity. Through our analysis, the DOR was not correlated
with any factors as follows: research regions (P= 0.15); different
types of validation datasets (P= 0.23); imaging modalities

(P= 0.78); types of datasets (P= 0.36); total number of images
(P= 0.07).

Subgroup analysis
The results of subgroup analysis are summarized in Table 2. We
found imaging modalities and resources of data had no
significant contributions to the diagnostic performance. For
different types of validation datasets, there was a better
performance in the internal dataset (SEN= 0.95, 95%
CI: 0.94–0.96; SPE= 0.97, 95% CI: 0.96–0.99; AUC= 0.99, 95%
CI: 0.97–1.00) than external dataset (SEN= 0.93, 95% CI:
0.92–0.95; SPE= 0.96, 95% CI: 0.94–0.97; AUC= 0.99, 95% CI:
0.98–0.99). For research regions, we found a better performance
in developed countries (SEN= 0.96, 95% CI: 0.93–0.98; SPE=
0.98, 95% CI: 0.97–0.99; AUC= 0.99, 95% CI: 0.97–0.99) than
developing countries (SEN= 0.94, 95% CI: 0.90–0.95; SPE= 0.96,
95% CI: 0.93–0.98; AUC= 0.98, 95% CI: 0.97–0.99). For different
total sizes of data, a better performance was detected in data
larger than 5000 (SEN= 0.96, 95% CI: 0.95–0.98; SPE= 0.97, 95%
CI: 0.96–0.99; AUC= 0.99, 95% CI: 0.97–0.99) than smaller than
5000 (SEN= 0.93, 95% CI: 0.91–0.95; SPE= 0.96, 95% CI:
0.94–0.98; AUC= 0.98, 95% CI: 0.98–0.99).

Sensitivity analysis
The sensitivity analysis is the repeat of the primary meta-analysis.
We excluded 5 studies without sufficient information about the
division of datasets or in-depth details of clinical data resources
[19, 22, 29–31]. Then, the pooled SEN was 0.94 (95% CI: 0.90 to
0.97), and the pooled SPE was 0.96 (95% CI: 0.95 to 0.98) for the
detection of PM. The results were similar to our main findings;
hence, there was no evidence that our main outcome was
influenced by which studies were included.

Fig. 1 PRISMA 2020 flow diagram of study selection. Flow diagram showing the study selection process and reasons for exclusion.
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DISCUSSION
We compared and analysed the results and characteristics of
published studies and addressed the gaps in the current meta-
analysis in the field of the application of AI in PM. Through our
review, AI technology has the potential to benefit the detection
and management procedure of PM patients in real-world settings,
similar to other eye diseases. By estimation, CNV occurred in
approximately 5–11% of eyes with high myopia, and early
detection and interventions for high-risk lesions in PM patients
are necessary to prevent underlying progression [34]. Through our
review, AI models based on fundus or OCT images both achieved
acceptable accuracy in the detection of CNV. According to
published literature, junior to senior retinal specialists can achieve
the accuracy of 0.999 for the detection of PM [35]. Despite the
relatively lower accuracy compared to traditional clinical examina-
tions, the utilization of AI can maximize the detection rates using a
convenient method. Apart from CNV, several published algorithms
also can identify complications in PM patients, for example,
the extraction and segmentation of peripapillary atrophy, auto-
matic quantitative analysis of fundus tessellation and automatic
segmentation and measurement of the choroid layer [24, 36, 37].

These advances can help efficiently quantify large amounts of
data and assist in detecting subtle differences that are difficult for
ophthalmologists.
Through subgroup meta-analysis, there was no significant

relationship between the diagnostic accuracy and imaging
modalities or resources of databases, while there were significant
relationships between the diagnostic performance and the scale
of databases, the types of validation sets and the countries where
the study was conducted affected. Compared to fundus images,
advances in OCT can help detect more characteristics, such as
macular-schisis and dome-shaped macula. With more studies
included in the future, it would be more meaningful to compare
the performances of AI in detail based on fundus and OCT
imaging. We also believe the diagnostic performance would be
further improved with the combination of AI technology and
advanced imaging modalities such as ultra-widefield fundus
images or swept-source OCT angiography (OCTA).
In contrast, AI algorithms demonstrated better performance in

internal validation datasets than external datasets. Such a lack of
reliability suggests that it is necessary to improve the general-
ization and robustness under different environments through a

Fig. 2 Forest plots and summary receiver operating characteristic (SROC) curves for the performance of artificial intelligence for the
detection of pathologic myopia. A The pooled sensitivity was 0.95 (95% CI: 0.92 to 0.96). B The pooled specificity was 0.97 (95% CI: 0.94 to
0.98). C The pooled area under the summary receiver operating characteristic (SROC) curve was 0.99 (95% CI: 0.97 to 0.99).

Fig. 3 Forest plots and summary receiver operating characteristics (SROC) curve for the performance of artificial intelligence for the
detection of pathologic myopia-related choroidal neovascularization. A The pooled sensitivity was 0.94 (95% CI: 0.90 to 0.97). B The pooled
specificity was 0.96 (95% CI: 0.94 to 0.98). C The pooled area under the summary receiver operating characteristic (SROC) curve was 0.99 (95%
CI: 0.97 to 0.99).
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variety of methods, such as training and testing the model
widely in different populations or devices [38]. Another point of
interest is that we found studies in developed countries showed
higher accuracy than developing countries. This might be
related to insufficient capacity to conduct high-quality studies
in low- and middle-income countries (LMICs). However, the
Southeast Asia, South Asia, and East Asia regions bear the
greatest potential burden as a proportion of the economy
associated with visual impairment resulting from uncorrected
myopia and MMD globally [39]. More importantly, it might be
difficult for healthcare systems in these countries to cope with a
relatively greater burden, especially during the COVID-19
pandemic period. At the same time, detailed health economic
evaluation for the application of AI-assisted models in real-world
settings is required to identify the priorities and strategies of
implementation.
More studies with high quality are necessary to enhance

reliability to unleash greater potential in real-world settings. First,
we can incorporate the data from multimodality images into
future AI systems to build a screening system that can detect
more dimensional characteristics in PM patients. Next, the
establishment of longitudinal medical records for patients can
help explore morphological characteristic parameters closely
related to the progression of PM. Predicting potential risk of
developing PM from school-aged myopia can provide evidence
for precise individualized interventions. Additionally, the algo-
rithms developed with the integration of more information, such
as genomic readouts and metabolomics from patients, will
increase the diagnostic or predictive power.
We should state that there exist several limitations in our

meta-analysis and review. First, our study only confirmed the
diagnostic power of AI in the detection of PM, but it is still
unknown whether AI algorithms have overall good performance
for grading PM according to different category systems. Second,
there was high heterogeneity among the included studies due
to the varying study designs, imaging modalities, algorithm
characteristics and threshold effects. Third, the definition of
pathological myopia was still controversial, META-PM based on
fundus figures only, and ATN classification combined fundus
figures and OCT, whereas both ignored the existence of
posterior staphyloma. Fourth, some included studies were
published in the journals of AI or computer science, and few
clinical details were reported. Thus, there were unknown risks of
bias in the selection of patients and the patient flow. Moreover,
it has been reported that the QUADAS-2 tool might under-
estimate the risk of bias of the included studies [9]. Fifth, some
included studies used the duplicated database (PALM database),
and there were overlapping data in our pooled meta-analysis
with underlying implications. Sixth, as in many AI-based studies
especially in big image databases, the sampling mechanisms are
unclear, and many diagnostic studies were case-control, mean-
ing that diseased and non-diseased subjects were recruited
based on different criteria. Last, current DL algorithms lack the
interpretability for their detection outcome, which is called the
“black box phenomenon”. The improvement of interpretability
will help ophthalmologists identify probable structural features
related to better diagnostic performance.
In conclusion, our review demonstrated the excellent perfor-

mance of current AI algorithms in detecting PM patients based on
fundus and OCT images, and AI-assisted automated screening
systems are promising for ameliorating increasing demands in
clinical settings. To the best of our knowledge, this was the first
published meta-analysis for the assessment of AI algorithms
applied in PM and PM-related CNV quantitatively. Nevertheless, to
provide substantial benefits in regular clinical practice under
different conditions, we still need to conduct continuous
innovative research with newly developed algorithms and
larger-scale databases.

SUMMARY

What was known before

● Current applications of artificial intelligence (AI) in ophthalmic
diseases have covered a variety of aspects with good
performance, including the diagnosis and classification of
pathologic myopia (PM).

● There are still relatively great variations among studies in
development procedures, databases, sample resources, and
many aspects of methodology.

What this study adds

● Our study demonstrated the excellent performance of current
AI algorithms in detecting PM patients based on fundus
and OCT images, and this was the first published meta-
analysis for the assessment of AI algorithms applied in PM
quantitatively.

● For the detection of PM, the summary area under the receiver
operating characteristic curve (AUC) was 0.99 (95% confidence
interval (CI): 0.97 to 0.99), and the pooled sensitivity and
specificity were 0.95 (95% CI: 0.92 to 0.96) and 0.97 (95% CI:
0.94 to 0.98), respectively.

● It provides crucial evidence for the application of AI-assisted
automated screening systems to ameliorate increasing
demands in the healthcare system.
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