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OBJECTIVES: To determine the feasibility, validity and reliability of automatically extracting clinically meaningful eyelid
measurements from consumer-grade videos of individuals with oculofacial disorders.
METHODS: A custom computer program was designed to automatically extract clinical measures from consumer-grade videos. This
program was applied to publicly available videos of individuals with oculofacial disorders, and age-matched controls. The primary
outcomes were margin reflex distance 1 (MRD1) and 2 (MRD2), blink lagophthalmos, and ocular surface area exposure. Test-retest
reliability was evaluated using Bland–Altman analysis to compare the agreement in obtained measures between separate videos of
the same individual taken within 48 h of each other.
RESULTS: MRD1 was reduced in individuals with ptosis versus controls (2.2 mm versus 3.4 mm, p < 0.001), and increased in
individuals with facial nerve palsy (FNP) (3.9 mm, p= 0.049) and thyroid eye disease (TED) (4.1 mm; p= 0.038). Blink lagophthalmos
was increased in individuals with FNP (3.7 mm); p < 0.001) and those with TED (0.1 mm, p= 0.003) versus controls (0.0 mm). Ocular
surface exposure was reduced in individuals with ptosis compared with controls (12.2 mm2 versus 13.1 mm2; p < 0.001) and
increased in TED (13.7 mm2; p 0.002). Bland-Altmann analysis demonstrated 95% limits of agreement for video-derived measures:
median MRD1: −1.1 to 1.1 mm; median MRD2: −0.9 to 1.0 mm; blink lagophthalmos: −3.5 to 3.7 mm; and average ocular surface
area exposure: −1.6 to 1.6 mm2.
CONCLUSIONS: The presented program is capable of taking consumer grade videos of patients with oculofacial disease and
providing clinically meaningful and reliable eyelid measurements that show promising validity.
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INTRODUCTION
Digitally enabled outpatient care and telemedicine is an important
cornerstone in the long-term plan of healthcare providers [1]. There
has been a growing trend for the adoption of telemedicine within
ophthalmology which predates the global COVID-19 pandemic. This
has been driven by increasing demands for service, cost efficiency,
patient convenience, and by the availability of modern ophthalmic
imaging techniques. Compared with other ophthalmic subspecialties,
oculoplastic and adnexal specialists have previously been slower to
embrace telemedicine, but during the COVID-19 pandemic there has
been a shift in practice for many [2, 3]. As a subspecialty, oculoplastics
is likely to lend itself well to consumer-grade video consultation (e.g.
using a smartphone or webcam). Indeed, it is estimated that almost
40% of new oculoplastic patient encounters and 60% of follow up
appointments might be suitable for remote video consultation [4].
Conducted during the height of the pandemic’s first wave, nation-
wide surveys of oculoplastic surgeons in the UK and the USA
demonstrated that 86.6–88.8% of respondents were incorporating
telemedicine into their routine clinical practice [5, 6]. Of those, about
85% were using a video-based platform to conduct remote
consultation [6]. That said, there appear to be some important

barriers to the widespread adoption of telemedicine in oculoplastics.
Two-thirds of oculoplastic consultants remain dissatisfied by the
limitations of clinical examination via telemedicine [5] and only 4% of
surveyed surgeons felt comfortable proceeding to surgery based on
remote consultation [6]. If video-based consultations are to provide
the improvements in service delivery that are hoped for, we must
strive for a standard of patient assessment that is at least comparable
to that which we can provide face to face. A central aspect of
the clinical assessment of patients in the oculoplastic clinic is the
measurement of various key eyelid parameters, allowing the clinician
to evaluate disease severity, progression and response to intervention.
Using recent developments in computer vision and deep learning,
our aim was to determine the feasibility of obtaining clinically
meaningful eyelid measurements from consumer-grade (i.e. non-
professional) videos of individuals.

METHODS
Program development
A custom program was developed using Python 3 [7] and OpenCV [8]. This
program, known hereafter as ‘VALID’ (Video Analysis of the eyelids), is
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provided with an MPEG-4 video as input and is designed to read
each consecutive frame of the inputted video. For each frame, a
region of interest (ROI) is detected using previously trained and
publicly available machine learning models [9, 10]. The ROI
detected corresponds to the right and/or left periocular region so
long as either one or both are visible in the frame. For each frame,
VALID uses a custom-trained deep learning model that is used to
predict whether each pixel in the ROI (left and/or right periocular
region) belongs to either eyelid skin, bulbar conjunctiva or cornea.
The solution for this ‘image segmentation’ deep learning model is
based on the ‘U-Net’ convolutional neural network architecture
[11] and was custom trained on a random sample of 7101 images
from a publicly available annotated dataset of eyes [12]. The
model was tested on a further 1781 images from the same dataset
that had not been used for training the model. As part of this
cross-validation exercise the model achieved an accuracy
of 98.2%.
Among the eyelid parameters most commonly recorded in the

oculoplastic clinics are the margin reflex distance 1 (MRD1) and 2
(MRD2). MRD1 and MRD2 refer to the distance from the corneal light reflex
to the central upper eyelid margin and central lower lid margin,
respectively. Both are important measures in the assessment of a wide
range of oculofacial disease and are potentially feasible to calculate from
the segmented video images. To achieve this, several computer vision
techniques were applied to the segmented image of each frame. These
techniques included contouring of the eyelid margin, pupil identification
using circle Hough transformation, and corneal stabilisation and tracking of
head position in order to account for partial or complete pupil obscuration
(e.g. by blinking), eye ductions and head movement (roll, pitch and yaw),
as demonstrated in Fig. 1.
VALID converts MRD1 and MRD2 from pixels to millimetres (mm), in

order to aid clinical interpretation. The fixed data point used as a basis for
this conversion was an assumed corneal diameter (‘white-to-white’) of
11.7 mm. This assumption is based on the finding that ‘white-to-white’ is
consistently measured within 0.5 mm of 11.7 mm in adults, and with a
standard deviation of less than 0.5 mm [13, 14]. Moreover, in adults, the
corneal diameter measurement would not be expected to change
significantly within the same individual measured at different timepoints
and so is likely to be appropriate in most clinical applications e.g. before
and after eyelid surgery, or to monitor disease progression in facial palsy or
thyroid eye disease. As a summary measure, the median values for MRD1
and MRD2 across all frames in each video are calculated.
In addition to MRD1 and MRD2, VALID was also designed to automatically

calculate blink lagophthalmos (in mm) and average ocular surface area
exposure (in mm2). Neither of these indices are reliably or accurately
measurable in standard clinical practice, however we believe that both may
be potential sensitive measures of dynamic eyelid function. Blink lagophthal-
mos and ocular surface exposure may be of particular relevance in patients
with dry eye syndrome, eyelid malposition, and orbicularis oculi weakness.
Blink lagophthalmos was recorded by identifying each blink cycle in a video
sequence and measuring the minimum interpalpebral height (combine MRD1
and MRD2) during each blink (Fig. 2). A median value for each detected blink
was calculated as the final measure. Average ocular surface exposure was
calculated by the summation of the total number of pixels segmented as
cornea or bulbar conjunctiva and converting this to mm2 according to the
aforementioned conversion factor. A mean value of all frames in the video
excerpt was calculated as a summary value.

Validity testing
A dataset was gathered using excerpts from videos made publicly available
online. All videos were used under the ‘fair use’ or equivalent exception to
copyright law for non-commercial research specific to the video’s country
of origin and in accordance with the ethical principles outlined in the
Declaration of Helsinki. Videos were identified by a strategic search of an
online video repository (YouTube™). All videos were downloaded and
converted into MPEG-4 format. Included videos were vetted by an
oculoplastic specialist for confirmation that the primary subject has a
diagnosis of either acute facial nerve palsy (FNP) within 1 week of onset,
thyroid eye disease (TED), or blepharoptosis. Other available information
(such as other posted videos, audio content or written material available
from the same subject) were used in conjunction with clinical judgement
to confirm the diagnosis. Videos were required to include at least a 10 s
excerpt of the subject talking naturally in a predominantly frontal plane

(camera-facing), although brief deviations from this frontal plane were
permitted. Videos with more than one subject were excluded. For each
individual, age was recorded (or estimated if the exact age could not be
confirmed) according to groups 20–29, 30–39, 40–49, 50–59, 60–69, 70–79,
80+. Age-matched control videos were downloaded of individuals with no
known or apparent oculofacial disorder. For each of the videos, our
program ‘VALID’ automatically calculated median MRD1, median MRD2,
blink lagophthalmos, and average ocular surface exposure for the side
most affected by disease. If both sides were equally affected or for those
unaffected controls, measures were calculated for one side selected at
random. For each of the test groups, statistical comparison was made
using the Wilcoxon rank-sum test for each measure. Bonferroni correction
was applied to an intended total alpha level of 0.05, equating to a test
threshold of 0.004 for statistical significance.
In some subjects with acute FNP, other videos were available of the same

subject prior to the onset of FNP and/or between 5 and 7 months after the
onset of FNP. These videos were also downloaded and converted into MPEG-4
format. The Wilcoxon signed-rank test was used to compare the VALID-derived
measures at the different time points, with an alpha level of 0.05.

Reliability testing
Using the same methods as above, further online videos were
amalgamated from individuals who had recorded and posted two separate
videos of themselves within 48 h of each other. In order to provide
sufficient spread in values, this included individuals with acute onset FNP,
as well as individuals with no known diagnosis. Test-retest reliability was
evaluated using Bland–Altman analysis to compare the agreement in
VALID-derived measures of median MRD1 and MRD2, blink lagophthalmos
and average ocular surface exposure. Analysis was conducted on the
affected eye in individuals with FNP, and a randomly selected eye in non-
affected individuals (controls).

Statistical analysis
All statistical analysis for reliability and validity testing was performed
using the R language and environment (version 2021.09.1 Build 372) [15].

RESULTS
The dataset included 77 individuals with FNP, 33 with ptosis, 33
with TED and 65 controls. The age and sex distribution of
individuals included is shown in Supplementary Fig. S1 and Fig. S2
respectively. Statistical comparison of VALID-derived measures is
shown in Table 1. Visual comparison of the measure distribution
for each group is shown in Fig. 3.
The calculated median MRD1 was significantly reduced in

individuals with ptosis compared with controls (2.2 mm versus
3.6 mm; p < 0.001) and increased in patients with FNP (3.9 mm;
p= 0.049) and TED (4.1 mm; p= 0.038). The median MRD2 was
greater in individuals with TED than in controls (6.4 mm versus
5.9 mm; p < 0.001). Calculated median MRD2 did not significantly
differ in individuals with ptosis or FNP compared with controls.
Blink lagophthalmos was significantly increased in individuals with
FNP and those with TED (versus controls). Ocular surface exposure
was reduced in individuals with ptosis compared with controls
and increased in patients with TED.
Of those individuals with acute onset FNP, a subset of 15 had

additional videos taken within the 6 months preceding the onset of
FNP. Both blink lagophthalmos (mean change 5.0mm; p< 0.001) and
ocular surface area exposure (mean change 1.1mm2; p= 0.04) were
significantly greater after the onset of FNP. There was no significant
difference in MRD1 (mean change 0.1mm; p= 0.6) or MRD2 (mean
change 0.2mm; p= 0.2). A subset of 27 individuals with acute onset
FNP had additional videos available from a timepoint of 5–7 months
following the onset of FNP. In this subset, a significant decrease was
seen in blink lagophthalmos (mean change −2.2mm; p= 0.004),
ocular surface area exposure (mean change−0.9mm2; p= 0.003) and
MRD1 (mean change −0.4mm; p= 0.03). Figure 4 highlights these
trends in a subset of 10 individuals with FNP who had videos available
at all three timepoints, thus allowing sequential intra-individual
comparisons to be appreciated.
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Fig. 1 Series of video still images demonstrating live eyelid parameter calculation. A series of screen captures from a single video clip of an
individual with left facial nerve palsy demonstrating the calculation of MRD1 (Margin Reflex Distance 1) and MRD2 (Margin Reflex Distance 2)
in real-time on a frame-by-frame basis (panels a–c). The predicted image segmentation mask overlies the region of interest (the right and left
eyes). The program is designed to handle head movement (a) and eye ductions (b). Consent given from patient for use and publication of
images.
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With regards to test-retest reliability, we obtained videos of 32
individuals affected by acute onset facial nerve palsy and 34 non-
affected individuals where two separate videos were recorded
within 48 h of each other. Bland–Altman analysis demonstrated
the 95% limits of agreement for median MRD1: −1.1 to 1.1 mm;
median MRD2: −0.9 to 1.0 mm; blink lagophthalmos: −3.5 to
3.7 mm; and average ocular surface area exposure: −1.6 to
1.6 mm2. Bland–Altman plots are shown in Supplementary Fig. S3.

DISCUSSION
This study demonstrates the potential feasibility of obtaining
computer-derived clinically meaningful eyelid measurements
from unconstrained digital videos. Using our pilot computer
program (VALID) individuals with FNP were found to have greater
blink lagophthalmos versus controls. Individuals with ptosis were
found to have reduced MRD1 and reduced ocular surface
exposure versus controls. Furthermore, subjects with TED were

found to have a greater MRD2, blink lagophthalmos, and average
ocular surface exposure versus controls. All of these findings are
in-keeping with expected clinical manifestations of such oculo-
facial disorders and offer evidence of construct validity. It
suggests that our program is able to detect differences between
groups of patients and may be valuable for research purposes.
Moreover, our solution appears to be able to detect differences
in eyelid parameters within the same individual over time. Taken
in combination with the test-retest reliability of these automated
measures as reported in this study, we suggest that VALID
measures taken within the same individual could be reliably used
in sequence. This would be particularly useful in evaluating the
disease course of an individual patient, or their response to
treatment. That said, it is not yet known how well these
automated measures agree with manually derived measures
taken in clinic by a specialist. It is reassuring that the test-retest
reliability in this study is approximately equivalent to
the agreement found between two independent clinicians

Fig. 2 Video still images demonstrating live tracking of interpalpebral height. Two sequential screen captures (a and b) from a video of an
individual with left facial nerve palsy. A live tracker of interpalpebral height (IPH) for right and left eye is provided underneath each screen
capture. Full blinks can be observed in the right eye, with 5 mm blink lagophthalmos seen in the left eye (b). Consent given from patient for
use and publication of images.

Table 1. Comparison of automated eyelid measures, grouped by disorder.

Eyelid parameter Control group
(n= 65)

Facial nerve palsy (n= 77) Ptosis (n= 33) Thyroid eye disease
(n= 33)

Median (IQR) Median (IQR) P value Median (IQR) P value Median (IQR) P value

MRD1 (mm) 3.6 (2.8–4.2) 3.9 (3.3–4.4) 0.049 2.2 (1.6–3.5) <0.001* 4.1 (3.4–4.6) 0.038

MRD2 (mm) 5.9 (5.4–6.2) 5.8 (5.4–6.2) 0.90 5.7 (5.4–6.1) 0.37 6.4 (6.0––6.9) <0.001*

Blink Lag-
ophthalmos (mm)

0.0 (0.0–1.1) 3.7 (0.0–5.7) <0.001* 0.0 (0.0–4.1) 0.06 0.0 (0.0–0.54) 0.003*

Ocular Surface Area
Exposure (mm2)

13.1 (12.3–13.8) 13.3 (12.1–14.1) 0.49 12.2 (11.5–13.0) <0.001* 13.7 (12.9–14.5) 0.002*

Wilcoxon test used for comparison with control group.
MRD1 Margin Reflex Distance 1, MRD2 Margin Reflex Distance 2.
*P value < alpha level of 0.004 (after Bonferroni correction of alpha < 0.05).
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measuring MRD1 in clinic [16]. It will be important to better
explore the agreement between automated and clinically
derived measures.
It is important to acknowledge that this study did not directly

recruit patients with oculofacial disorders when making compar-
isons in measurements. Rather, it relied on publicly sourced videos
of individuals with self-reported disorders, that were corroborated
by a clinician based on the best available information. As such, the
encouraging findings reported in this proof-of-concept study can
now pave the way for further development and validation in a
clinical population.
Artificial intelligence has previously been used to automatically

derive MRD1 [17–19] and MRD2 [19] from still images. To date,
these solutions have all relied on machine learning models that
are trained on standardised and professionally sourced images in
the frontal plane. In contrast, the deep learning model used within
VALID is trained on a dataset of low-resolution images of mixed
quality, with no standardisation in head or eye positioning. As
such, this model lends itself much more favourably to video
footage provided by a patient’s device (webcam or smartphone)
and thus video consultation, which has gained traction during the
current pandemic [20]. Another important consideration is that
still images taken by an untrained user only provide a single
snapshot of a patient’s oculofacial status. It is well known that
subjects may involuntarily activate certain periocular muscle
groups as a reflex response to being photographed. Therefore,
video footage used by VALID is more likely to capture a patient in

a natural state that is representative of their everyday and
dynamic oculofacial status.
Eyelid function is a dynamic process, and therefore lends itself

more to video assessment versus photography. Blink lagophthal-
mos is an important dynamic parameter which is difficult to
accurately measure in clinic or from still images. By using video
footage, our software was able to elicit blink lagophthalmos
values, which were significantly greater in individuals with FNP
and TED when compared with controls. This data could be used
both to stratify risk of exposure keratopathy at initial presentation
using designated acute FNP pathways, and to monitor recovery in
some individuals. In our small cohort of individuals with FNP with
follow-up data, most eyelid parameters had recovered at 6 months
from onset. However, there appears to be a residual deficit in blink
lagophthalmos that can be appreciated objectively using the
presented method, and correlates well with anecdotal clinical
experience. Thus, the example of blink lagophthalmos highlights
the possible advantages of automated eyelid measurements over
still image analysis, and in some instances may even also
supplement face-to-face examination.
There are, of course, other important eyelid measurements used

in oculoplastic assessments (e.g., exophthalmometry, levator
function and eyelid laxity), which are not addressed in this study.
There is still a very long way to go if telemedicine is going to fully
satisfy the needs of our daily clinical practice. However, this proof-
of-concept study offers promise that, with targeted application,
such developments could now be within reach. Deep learning

Fig. 3 Distribution of automated eyelid parameters in oculofacial disorders versus controls. Comparing the distribution of (a) MRD1
(Margin Reflex Distance 1); (b) MRD2 (Margin Reflex Distance 2); (c) blink lagophthalmos; and (d) average surface area exposure between
controls (in light grey) and individuals with facial nerve palsy (FNP), ptosis and TED (thyroid eye disease).
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models and computer vision algorithms might soon offer other
useful adjuncts to the oculoplastic service, for example in
monitoring clinical activity of TED, or triaging patients with FNP
and periocular skin lesions. Digitally enabled outpatient care is
viewed by many as one of the central pillars of a sustainable future
healthcare service. This study represents one of many first steps
towards this vision.

Summary

What was known before

● Telemedicine and mobile health monitoring is likely to play a
key role in the delivery of future healthcare services.
Automated eyelid measures have been captured from photos
of patients using machine learning techniques.

What this study adds

● Using this computer vision model, it is feasible to auto-
matically capture clinically relevant eyelid measures from
videos. When tested on videos of individuals with known
Oculofacial disorders, the captured measurements demon-
strate promising reliability and validity.
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